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Abstract. We study anomalous gauge-boson couplings induced by a locally SU(2) × U(1) invariant effec-
tive Lagrangian containing ten operators of dimension six built from boson fields of the standard model
(SM) before spontaneous symmetry breaking (SSB). After SSB some operators lead to new three- and
four-gauge-boson interactions, some contribute to the diagonal and off-diagonal kinetic terms of the gauge
bosons, to the kinetic term of the Higgs boson and to the mass terms of the W and Z bosons. This requires
a renormalisation of the gauge-boson fields, which, in turn, modifies the charged- and neutral-current in-
teractions, although none of the additional operators contain fermion fields. Also the Higgs field must
be renormalised. Bounds on the anomalous couplings from electroweak precision measurements at LEP
and SLC are correlated with the Higgs-boson mass mH . Rather moderate values of anomalous couplings
allow mH up to 500 GeV. At a future linear collider the triple-gauge-boson couplings γWW and ZWW
can be measured in the reaction e+e− → WW . We compare three approaches to anomalous gauge-boson
couplings: the form-factor approach, the addition of anomalous-coupling terms to the SM Lagrangian after
and, as outlined above, before SSB. The translation of the bounds on the couplings from one approach to
another is not straightforward. We show that it can be done for the process e+e− → WW by defining new
effective γWW and ZWW couplings.
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1 Introduction

The standard model (SM) of particle physics has been
tested in numerous aspects with impressive success. How-
ever, it lacks the attributes of a truly fundamental theory
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since it does not predict the number of particles or families
and contains a large number of free parameters. Moreover,
it does not incorporate gravity, so that ultimately a differ-
ent theory has to replace the SM. One possibility is that
physics beyond the SM will appear at an energy scale Λ.
From current electroweak precision fits one estimates (see
for instance [1]) that Λ should be at least of the order of
TeV but, in fact, could be even much higher. The impact
of this new high-scale physics on the phenomenology at
lower energies can be taken into account in various ways.

In the form-factor (FF) approach the relevant ver-
tices are parameterised in a general way. For the reaction
e+e− → WW this was done in [2,3] for the three-gauge-
boson vertices γWW and ZWW . There the structure of
these two vertices is only restricted by Lorentz invari-
ance. Form factors can and should have imaginary parts.
Anomalous contributions to the γWW - and ZWW -form
factors have been studied extensively both for LEP2 en-
ergies (see [4] and references therein) and for the energy
range of future linear colliders [5–11].

Another possibility is to use an effective Lagrangian.
Here we have two options. We can start from the SM La-
grangian after spontaneous symmetry breaking (SSB) and
add terms of higher dimension to obtain an effective La-
grangian, which we call the ELa approach (effective La-
grangian after SSB). Alternatively we can start from the
SM Lagrangian before SSB and add terms of higher dimen-
sion there, called the ELb approach (effective Lagrangian
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before SSB). In both cases the anomalous-coupling con-
stants in the effective Lagrangian must be real. Anoma-
lous imaginary parts in form factors are generated by loop
effects using the effective-Lagrangian techniques familiar
from chiral perturbation theory; see for instance [12]. The
three approaches FF, ELa and ELb are related but should
not be confused with each other; see the discussion in [13].
The ELa approach, taking the anomalous terms in lead-
ing order, produces only real parts of anomalous form fac-
tors. In the ELb approach the SSB has to be performed
for the SM and the anomalous parts of the Lagrangian
together. This has drastic consequences for all parts of
the Lagrangian as we shall analyse in detail in this paper
for various electroweak precision observables measured at
LEP and SLC as well as for the reaction e+e− → WW
at a future linear e+e− collider (LC). It also has the
consequence that the counting of dimensions of anoma-
lous terms is changed when Higgs fields are replaced by
their vacuum expectation values; see [13], where also the
question of SU(2) × U(1) gauge invariance is discussed.
Anomalous couplings from operators of dimension n in
the ELb approach will generate operators of dimension
n′ ≤ n in the ELa approach.

Some advantages and disadvantages of the three ap-
proaches are as follows. The FF approach is the most gen-
eral one but it has the disadvantage of introducing many
parameters. Also, the anomalous parts of form factors for
different reactions like e+e− → WW and γγ → WW are
a priori not related. The ELa and ELb approaches allow
one to relate anomalous effects in different reactions. Sup-
pose now that we restrict the anomalous-coupling terms
to dimension n′ ≤ 6 and n ≤ 6 in the ELa and ELb ap-
proaches, respectively. Then the ELa approach generates
more couplings than the ELb approach. Thus, in a sense,
the ELb approach is the most restrictive framework if the
dimension of the coupling terms is limited. For an appli-
cation of the FF approach to the reaction e+e− → τ+τ−
see for instance [14]; for an application of the ELa ap-
proach to Z decays see [15]. In the present paper we
study mainly the ELb approach to anomalous electroweak
gauge-boson couplings. We add to the SM Lagrangian –
before SSB – operators of higher dimension that consist of
SM fields. The natural expansion parameter for this series
is (v/Λ), where v ≈ 246 GeV is the vacuum expectation
value of the SM-Higgs-boson field. Lists of all operators
up to dimension six that respect the SM gauge symme-
try SU(3) × SU(2) × U(1) were given in [16,17]; see also
references therein. A number of studies of the effects of
these operators for phenomenology were made; see for in-
stance [18,19]. We will comment below on the relation of
these works to our present work. Here we follow [16] where
systematic use is made of the equations of motion in or-
der to reduce the number of operators to an independent
set. A particularly interesting part of this Lagrangian is
its gauge-boson sector because, in the SM, the structure
of the gauge-boson vertices is highly restricted. In the SM
there exist triple- as well as quartic-gauge-boson couplings
all of which are fixed by the coupling constants of SU(2)
and U(1); see for instance [20]. At tree level the triple

couplings γWW , ZWW and only the quartic couplings
WWWW , γγWW , γZWW and ZZWW occur. Further-
more, in the SM the interactions of gauge bosons with the
Higgs boson are determined by the covariant derivative
acting on the Higgs field.

Here we consider the leading-order operators of dimen-
sion higher than four – that is of dimension six – that
consist either only of electroweak gauge-boson fields or of
gauge-boson fields combined with the Higgs-boson field
of the SM. There are ten such operators, four of them
CP violating [16]. This leads to ten new coupling con-
stants hi, subsequently called anomalous couplings, which
parameterise deviations from the SM. It is assumed that
the new-physics scale Λ is large enough such that oper-
ators of dimension six already give a good description of
the high-scale effects. To keep the number of anomalous
couplings within reasonable limits we exclude all non-SM
operators that a priori involve fermions. Nevertheless, the
purely bosonic anomalous couplings change the gauge-
boson–fermion interactions in the following way. After
SSB the pure boson operators contribute to the diagonal
as well as off-diagonal kinetic terms of the gauge bosons
and to the mass terms of the W and Z bosons. Firstly,
this requires a renormalisation of the W -boson field. Sec-
ondly, the kinetic and the mass matrices of the neutral
gauge bosons have to be diagonalised simultaneously to
obtain the physical photon and Z-boson fields as linear
combinations of the photon and Z-boson fields of the ef-
fective Lagrangian. This in turn modifies the neutral- and
charged-current interactions. Since all fermion families are
affected in the same manner no flavour-changing neutral
currents are induced. Moreover two dimension-six opera-
tors contribute to the kinetic term of the Higgs boson such
that a renormalisation of the Higgs field is necessary, too.

Thus in the ELb approach purely bosonic anomalous
couplings influence also the precision observables from
Z decay. In this paper we exploit this to calculate bounds
on two CP conserving anomalous couplings from mea-
surements at LEP1 and SLC and from W -boson measure-
ments. To this end precision observables that are sensitive
to the modified gauge-boson–fermion interactions or to
the mass of the W boson are used. Less stringent bounds
are obtained from direct measurements of the three-gauge-
boson vertices γWW and ZWW in various processes at
LEP2. However, one more CP conserving coupling and
two CP violating couplings can be constrained using this
data. Bounds on anomalous triple-gauge-boson couplings
(TGCs) have been measured by the CDF collaboration
[21] and the DO/ collaboration [22] and are discussed in
Sect. 6.1.

One important purpose of future high-energy experi-
ments is the precision check of the relations between the
various gauge-boson couplings. Their SM values guaran-
tee the renormalisability of the electroweak theory. Thus
any observed deviations from these SM values would
have drastic consequences for the structure of the theory.
Gauge-boson couplings can be studied at the LHC [23–25]
and with high precision at a future LC like TESLA [26–
28], NLC [8], JLC [29] or CLIC [30]. There W pair pro-
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duction, e+e− → WW , is suitable to measure TGCs. In
previous work [5,6,10,11] on e+e− → WW by our group
we followed the form-factor approach using the parameter-
isation of the γWW and ZWW vertices of [3]. The max-
imum achievable sensitivity to the anomalous couplings
in this process at CM energies of 500 GeV, 800 GeV and
3 TeV was determined by means of optimal observables
[5,6] for the case of no or longitudinal beam polarisation
in [10], and for transverse beam polarisation in [11]. Op-
timal observables were introduced for one-variable prob-
lems in [31] and for multi-variable problems in [5]. In the
present paper we use, as explained above, the effective La-
grangian approach ELb. We give a detailed comparison of
the FF and the ELb approaches for e+e− → WW in the
following. In our ELb approach not only the γWW and
ZWW vertices but also the gauge-boson–fermion vertices
and the W and Z propagators get anomalous contribu-
tions. We show that nevertheless the results computed in
the FF approach can be transformed into bounds on the
anomalous couplings used here with ELb. This is achieved
be defining new effective γWW and ZWW couplings that
are specific for the reaction e+e− → WW . In our ELb ap-
proach we have SU(2) × U(1) gauge invariance and we
have restricted ourselves to dimension six for the addi-
tional operators. These two ingredients together lead to
the well known “gauge relations” for the TGCs [4]. Note
that SU(2) × U(1) gauge invariance alone gives no restric-
tions on the TGCs. Interestingly we find that even if the
usual gauge relations hold for the original TGCs these re-
lations change when we use the effective couplings, which
are directly related to the FF approach. Moreover, even
without effective couplings the shape of the gauge rela-
tions depends on the input parameter scheme.

In this paper we also mention some properties of the
γγWW and γγH vertices that do not occur in the observ-
ables that we consider here but play an important rôle in
the reaction γγ → WW at a collider with two high-energy
photons in the initial state. Such a photon collider has
been proposed as an option for TESLA [32] and for CLIC
[33]. The process γγ → WW will be studied in forthcom-
ing work [34]. Clearly, for a comparison of the reactions
e+e− → WW and γγ → WW the ELb framework is the
most suitable one. This is the main motivation for treating
e+e− → WW in the ELb approach in the present paper,
since our results here are required for the discussion of
γγ → WW in [34]. There we shall give a comparison of the
sensitivities of the reactions e+e− → WW and γγ → WW
to anomalous gauge-boson couplings.

This work is organised as follows: In Sect. 2 we give an
overview of the operators in our effective Lagrangian (ELb
approach) and explain, which operators contribute to the
kinetic and mass terms of the gauge bosons and of the
Higgs boson, to the three- and four-gauge-boson couplings,
and to the photon–photon–Higgs coupling. In Sect. 3 we
perform the simultaneous diagonalisation of the kinetic
and mass terms of the neutral gauge bosons and the renor-
malisation of the charged gauge boson and Higgs boson
fields. We then consider the interactions of gauge bosons
with fermions in Sect. 4 and define two different sets of

electroweak parameters, that we use to calculate the ob-
servables: one set, PZ , containing the Z mass, the other
one, PW , containing the W mass. In Sect. 5 we present the
bounds on the anomalous couplings from electroweak pre-
cision measurements at LEP and SLC, except for direct
measurements of the three-gauge-boson vertices, thereby
using PZ . In Sect. 6 we give the relations of the standard
couplings ∆gγ

1 , ∆κγ , etc. for the γWW and ZWW ver-
tices to our anomalous couplings using PZ and, alterna-
tively, using PW as input parameters. We derive bounds on
the anomalous couplings of the effective Lagrangian from
measurements of TGCs at LEP2 using PZ . We analyse
in detail the reaction e+e− → WW at a future LC where
we define effective γWW and ZWW couplings using PW .
We calculate the bounds obtainable on the anomalous
couplings using the results of [10,11] for this reaction. In
Sect. 7 we present our conclusions.

2 Effective Lagrangian

Our starting point is the effective Lagrange density Leff
containing all lepton- and baryon-number-conserving op-
erators that can be built from SM fields [16]. Let Λ be the
scale of new physics and v ≈ 246 GeV be the vacuum ex-
pectation value of the Higgs field. If not stated otherwise,
numerical values of physical parameters are taken from
[35]. Throughout this paper we assume

Λ � v. (2.1)

Then Leff can be expanded as

Leff = L0 + L1 + L2 + . . . , (2.2)

where L0 contains operators of dimension less or equal
to four, L1 of dimension five, L2 of dimension six etc.
The terms L1, L2, . . . give contributions of order (v/Λ),
(v/Λ)2, . . . in the amplitudes, thus (2.2) represents effec-
tively an expansion in powers of (v/Λ).

Given the SM particle content, the general form of L0
is fixed as that of the SM Lagrangian by gauge invariance.
For the SM Lagrangian we use the conventions of [20].
Restricting ourselves to the electroweak interactions and
neglecting neutrino masses we have (see Chap. 22 of [20])

L0 = −1
4
W i

µνW
i µν − 1

4
BµνB

µν (2.3)

+ (Dµϕ)† (Dµϕ) + µ2ϕ†ϕ− λ
(
ϕ†ϕ

)2
+ iLD/ L+ iED/ E + iQD/ Q+ iUD/ U + iDD/ D
− (E ΓE ϕ

†L+ U ΓU ϕ̃
†Q+DΓD ϕ†Q+ H.c.

)
.

The 3 × 3 Yukawa matrices have the form

ΓE = diag(ce, cµ, cτ ), (2.4)
ΓU = diag(cu, cc, ct), (2.5)

ΓD = V diag(cd, cs, cb)V †, (2.6)

where the diagonal elements all obey ci ≥ 0 and V is the
CKM matrix. With these conventions the matrices ΓE ,
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Table 1. Weak hypercharge of the fermions and the Higgs
doublet

L E Q U D ϕ

y − 1
2 −1 1

6
2
3 − 1

3
1
2

ΓU , ΓD correspond to the matrices C�, C ′
q, Cq in [20], re-

spectively. The vector of the three left-handed lepton dou-
blets is denoted by L, of the right-handed charged leptons
by E, of the left-handed quark doublets by Q, and of the
right-handed up- and down-type quarks by U and D. The
Higgs field is denoted by ϕ and we define

ϕ̃ = εϕ∗, ε =

(
0 1

−1 0

)
. (2.7)

The covariant derivative is

Dµ = ∂µ + igW i
µTi + ig′BµY, (2.8)

where Ti and Y are the generating operators of weak-
isospin and weak-hypercharge transformations. For the
left-handed fermion fields and the Higgs doublet we have
Ti = τi/2, where τi are the Pauli matrices. For the right-
handed fermion fields we have Ti = 0. The hypercharges y
of the fermions and the Higgs doublet are listed in Table 1.
The field strengths are1

W i
µν = ∂µW

i
ν − ∂νW

i
µ − g εijk W

j
µW

k
ν , (2.9)

Bµν = ∂µBν − ∂νBµ.

For the parameters of the Higgs potential in (2.3) we as-
sume

µ2 > 0, λ > 0. (2.10)

Then the potential has a minimum for constant field sat-
isfying √

2ϕ†ϕ =

√
µ2

λ
≡ v. (2.11)

After SSB, that is in the unitary gauge, we can choose the
Higgs field to have the form

ϕ(x) =
1√
2

(
0

v +H ′(x)

)
, (2.12)

where H ′(x) would be the physical Higgs field in the SM,
and in lowest order the vacuum expectation value of the
Higgs field, v, is given in terms of the Lagrangian param-
eters by (2.11). Looking at the Higgs-mass term we find
for the squared mass of the Higgs boson in the SM

m′ 2
H = 2λv2. (2.13)

1 The signs in front of the gauge couplings in (2.8) and (2.9)
differ from the conventions of [16]. This may lead to sign
changes in the dimension-six operators discussed below.

The coupling constants in (2.4) to (2.6) are related to the
fermion masses by

mj = cj
v√
2

(2.14)

with j = u, c, t, d, s, b, e, µ, τ .
The higher-dimensional operators in L1, L2 etc.

in (2.2) describe the effects of new physics at the scale
Λ on the phenomenology at the weak scale v. Following
[16,17], we assume SU(3) × SU(2) × U(1) gauge invari-
ance also for the new interactions. The only Lorentz and
gauge invariant operator of dimension five that can be
constructed from SM fields violates lepton-number con-
servation [16] and hence is not considered here. Thus, the
leading-order addition to the SM Lagrangian is L2, which
should therefore lead to a good description of the new-
physics effects at energies sufficiently below Λ. Compared
to [17] the number of operators of dimension six to be
considered is reduced in [16] by systematically applying
the equations of motion. This is a completely legitimate
procedure for our purposes; see also the discussion of this
point in [13]. We thus refer to the list of operators in [16]
for our analysis.

Out of the 80 dimension-six operators listed in [16]
we consider all operators that consist either only of elec-
troweak gauge-boson fields or of gauge-boson fields com-
bined with the SM Higgs field; see (3.5), (3.6) and (3.41)
to (3.44) in [16]:

OW = εijk W
i ν
µ W j λ

ν W k µ
λ ,

OW̃ = εijk W̃
i ν
µ W j λ

ν W k µ
λ , (2.15)

OϕW =
1
2
(
ϕ†ϕ

)
W i

µνW
i µν ,

OϕW̃ =
(
ϕ†ϕ

)
W̃ i

µνW
i µν , (2.16)

OϕB =
1
2
(
ϕ†ϕ

)
BµνB

µν ,

OϕB̃ =
(
ϕ†ϕ

)
B̃µνB

µν , (2.17)

OWB =
(
ϕ†τ iϕ

)
W i

µνB
µν ,

OW̃B =
(
ϕ†τ iϕ

)
W̃ i

µνB
µν , (2.18)

O(1)
ϕ =

(
ϕ†ϕ

)
(Dµϕ)† (Dµϕ) ,

O(3)
ϕ =

(
ϕ†Dµϕ

)† (
ϕ†Dµϕ

)
. (2.19)

Here the dual field strengths are defined as

W̃ i
µν =

1
2
εµνρσW

i ρσ, B̃µν =
1
2
εµνρσB

ρσ. (2.20)

In the following we therefore use the effective La-
grangian

Leff = L0 + L2, (2.21)

where L0 is the SM part (2.3). The non-SM part with the
dimension-six operators is
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L2 =
(
hWOW + hW̃OW̃ + hϕWOϕW + hϕW̃OϕW̃

+ hϕBOϕB + hϕB̃OϕB̃ + hWBOWB + hW̃BOW̃B

+ h(1)
ϕ O(1)

ϕ + h(3)
ϕ O(3)

ϕ

)
/v2, (2.22)

where we have divided by v2 in order to obtain dimension-
less coupling constants hi, with i = W, W̃ , ϕW, . . . The hi

are subsequently called anomalous couplings. Nominally
we have

hi = O(v2/Λ2). (2.23)

3 Symmetry breaking and diagonalisation
in the gauge-boson sector

Starting from the Lagrangian (2.21) we go now to the
unitary gauge, that is we replace the Higgs field every-
where by the expression (2.12) involving only the Higgs-
vacuum expectation value v and the field H ′(x), which
would be the physical Higgs-boson field for zero anoma-
lous couplings. If this is done for L0 we arrive at the
SM Lagrangian in unitary gauge; see (22.123) of [20]. It
is convenient to take this as starting point and consider
the necessary changes due to the L2 term in (2.21) subse-
quently. Let us, therefore, introduce boson fields A′

µ, Z ′
µ

and W ′±
µ which would be the physical gauge-boson fields

if we considered only the SM Lagrangian L0. The original
W i

µ and Bµ fields are expressed in terms of these fields as
follows:

W 1
µ =

1√
2

(
W ′+

µ +W ′−
µ

)
,

W 2
µ =

i√
2

(
W ′+

µ −W ′−
µ

)
, (3.1)

W 3
µ = c′w Z

′
µ + s′

w A
′
µ,

Bµ = −s′
w Z

′
µ + c′w A

′
µ, (3.2)

where

s′
W ≡ sin θ′

W =
g′√

g2 + g′ 2 , (3.3)

c′W ≡ cos θ′
W =

g√
g2 + g′ 2 (3.4)

are the sine and cosine of the weak mixing angle in the
SM, determined by the SU(2) and U(1)Y couplings of L0.
Without loss of generality we can assume g and g′ to be
greater than zero and therefore have 0 ≤ θ′

W ≤ π/2. The
positron charge e′ of L0 is given by

e′ = gs′
W. (3.5)

The next step is to consider the term L2 in (2.21) and
(2.22), and insert for the Higgs field ϕ(x) everywhere
(2.12) and for the gauge-boson fields (3.1) and (3.2). We
see then easily that the original dimension-six operators
in L2 give now contributions to dimension-two, -three, -
four, -five and -six terms.

In Table 2 we list from which coupling constants in
(2.22) corresponding to the operators (2.15) to (2.19) we
get contributions to the kinetic and mass terms of the
gauge bosons, to the kinetic terms of the Higgs boson,
and to several coupling terms of the gauge bosons and
the Higgs boson in the basis W ′±, Z ′, A′, H ′. The ki-
netic terms of the gauge bosons receive contributions only
from OϕW , OϕB and OWB . The operators OϕW̃ , OϕB̃ or
OW̃B do not contribute there since their terms of second
order in the boson fields vanish after partial integration.
The operators O(1)

ϕ and O(3)
ϕ contribute only to the gauge-

boson-mass terms and to the kinetic term of the Higgs
field H ′.

In Table 2 we also show how the dimension-six oper-
ators contribute to those gauge-boson and gauge-boson–
Higgs vertices that are required for our studies. Note that
in Table 2 we show the contributions to the vertices where
the operators are still written in terms of the primed fields
W ′±, Z ′, A′, H ′. The operators OW and OW̃ contribute
both to the three- and to the four-gauge-boson couplings.
The operators OϕW , OWB and OW̃B contribute to the
three-gauge-boson vertices with terms proportional to v2.
In addition, the operator OϕW also induces a four-gauge-
boson vertex. The operator OϕW̃ contributes neither to
the TGCs, since the corresponding term can be written as
a total divergence, nor to the four-gauge-boson couplings

Table 2. Contributions from SM Lagrangian and from operators (2.15) to (2.19) to kinetic and
mass terms of gauge bosons, to the kinetic term of the Higgs boson and to terms of the form
V ′W ′+W ′−, A′A′W ′+W ′− and A′A′H with V ′ = A′ or Z′. Note that the contributions to the
physical γWW , ZWW and γγH ′ vertices after the simultaneous diagonalisation are different;
see Table 7 below

SM hW hW̃ hϕW hϕW̃ hϕB hϕB̃ hWB hW̃B h
(1)
ϕ h

(3)
ϕ

gauge kinetic
√ √ √ √

gauge mass
√ √ √

Higgs kinetic
√ √ √

V ′W ′+W ′− √ √ √ √ √ √
A′A′W ′+W ′− √ √ √ √

A′A′H ′ √ √ √ √ √ √
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because the term of the form

εµνρσεijkεilmW
j
µW

k
ν W

l
ρW

m
σ (3.6)

vanishes for symmetry reasons. In addition, six operators
give rise to a A′A′H ′ vertex. The dimension-six opera-
tors of L2 induce anomalous terms to further vertices, e.g.
Z ′Z ′H ′ and W ′+W ′−H ′, which are however not relevant
for our calculations.

We see that with the inclusion of L2, the kinetic and
the mass terms of the gauge bosons as well as the kinetic
term of the Higgs field H ′ do not have standard form any
more due to additional contributions arising according to
Table 2. We have now to diagonalise the mass matrix and
simultaneously transform the kinetic matrix to the unit
matrix to identify the physical gauge-boson fields and the
physical Higgs-boson field. The gauge-boson kinetic and
mass terms of the effective Lagrangian (2.21) are given by

L(2)
V + L(2)

W , (3.7)

where

L(2)
V = −1

4
V ′ T

µν T
′ V ′µν +

1
2
V ′ T

µ M ′ V ′µ , (3.8)

L(2)
W = −1

2
(1 − hϕW )W ′+

µνW
′−µν (3.9)

+m′ 2
W

(
1 + h(1)

ϕ /2
)
W ′+

µ W ′−µ ,

V ′
µν = ∂µV ′

ν − ∂νV ′
µ , V ′

µ =
(
Z ′

µ, A
′
µ

)T
, (3.10)

W ′±
µν = ∂µW

′±
ν − ∂νW

′±
µ . (3.11)

Here we have introduced vector notation for the neutral
primed gauge fields, and T ′ and M ′ are given by

T ′ =

(
a b

b d

)
, (3.12)

M ′ = m′ 2
Z

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

))(1 0
0 0

)

with

a = 1 − 2c′Ws
′
WhWB − c′ 2WhϕW − s′ 2

WhϕB , (3.13)

b =
(
c′ 2W − s′ 2

W
)
hWB + c′Ws

′
W (hϕB − hϕW ) , (3.14)

d = 1 + 2c′Ws
′
WhWB − s′ 2

WhϕW − c′ 2WhϕB . (3.15)

The quantities

m′ 2
W = g2v2/4, (3.16)

m′ 2
Z = (g2 + g′ 2)v2/4 (3.17)

would be the squared gauge-boson masses after SSB if we
considered only the SM Lagrangian L0. Because of charge
conservation there is no mixing between charged and neu-
tral gauge-boson fields in (3.7). Moreover, the matrix M ′
has only one non-zero entry (corresponding to Z ′Z ′) since
terms of second order in the gauge fields without deriva-
tives can only come from operators with two covariant

derivatives of Higgs fields, as occurring in (2.3) and (2.19).
There, due to (2.12), only the massive gauge bosons con-
tribute.

We would like to find a basis in the fields such that
(3.7) takes the standard form:

L(2)
V = −1

4
(ZµνZ

µν +AµνA
µν) +

1
2
m2

ZZµZ
µ, (3.18)

L(2)
W = −1

2
W+

µνW
−µν +m2

WW+
µ W

−µ, (3.19)

where

Zµν = ∂µZν − ∂νZµ, (3.20)

Aµν = ∂µAν − ∂νAµ, (3.21)

W±
µν = ∂µW

±
ν − ∂νW

±
µ , (3.22)

and mZ and mW are (in lowest order) the physical masses
of the Z andW bosons, respectively. For the charged fields
this can be easily achieved by a rescaling

m2
W =

(
1 + h

(1)
ϕ /2

1 − hϕW

)
m′ 2

W (3.23)

=

(
1 + h

(1)
ϕ /2

1 − hϕW

)
g2v2

4
,

W±
µ =

√
1 − hϕW W ′±

µ . (3.24)

In the approximation linear in the anomalous couplings
(3.23) agrees with (4.5a) in [16] (where the definition of v
differs by a factor of

√
2 from ours) and with (3) in [17].

In the case of the neutral fields we perform a linear trans-
formation

V ′
µ = C V µ, (3.25)

where
V µ = (Zµ, Aµ)T. (3.26)

Choosing the non-orthogonal matrix

C =

( √
d/t 0

−b/√dt 1/
√
d

)
(3.27)

with t = ad− b2, we obtain the desired form

T = CTT ′C = �,

M = CTM ′C =

(
m2

Z 0
0 0

)
,

(3.28)

where � denotes the 2×2 unit matrix and the squared
physical mass of the Z boson is

m2
Z =

d

t

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

))
m′ 2

Z (3.29)

=
d

t

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

)) g2 + g′ 2

4
v2.
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We remark that the simultaneous diagonalisation of the
kinetic and mass terms in the neutral gauge-boson sec-
tor is completely analogous to the introduction of normal
coordinates in the problem of small oscillations in me-
chanics; see for instance [36]. This kind of diagonalisation
(3.27) has been done in [37], where the mixing term of a
W3 and a photon field is studied. A similar procedure is
performed in [38] where operators up to dimension five are
considered. In the approximation linear in the anomalous
couplings (3.29) agrees with (4.5b) in [16] and with (4) in
[17].

Similarly to the gauge bosons we now consider the
terms of the Lagrangian quadratic in the Higgs field

L(2)
H =

1
2

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

))
(∂µH

′) (∂ µH ′)

− 1
2
m′ 2

HH
′ 2, (3.30)

where m′ 2
H is given by (2.13). To obtain the standard form

L(2)
H =

1
2

(∂µH) (∂ µH) − 1
2
m2

HH
2, (3.31)

we define the physical Higgs-boson mass and physical
Higgs field by a rescaling

m2
H =

m′ 2
H

1 +
(
h

(1)
ϕ + h

(3)
ϕ

)
/2
, (3.32)

H =
√

1 +
(
h

(1)
ϕ + h

(3)
ϕ

)
/2 H ′. (3.33)

For the original Higgs-doublet field in the unitary gauge
we find from (2.12) and (3.33)

ϕ(x) =
1√
2

 0

v +
(
1 + (h(1)

ϕ + h
(3)
ϕ )/2

)−1/2
H(x)

 .

(3.34)
For non-zero h(1)

ϕ + h
(3)
ϕ this differs from the SM result.

To analyse the phenomenology of the effective La-
grangian (2.21) we also have to express the dimension-six
operators (2.15) to (2.19) in terms of the physical fields
W±, Z, A and H. In particular, we have to substitute the
Higgs field according to (2.12) and (3.33). Due to (3.24),
(3.25) and (3.27), the Lagrangian (2.21), and particularly
the γWW , ZWW , γγWW and γγH vertices, depend then
on the anomalous couplings in a non-linear way. We list

these vertices in Sect. 6 where we treat the triple- and
quartic-gauge couplings in detail.

The diagonalisation has an important consequence
concerning the operators OϕW and OϕB . Notice that
the v2-terms of these operators are proportional to the
gauge invariant kinetic terms of the SM Lagrangian; see
the first two terms of (2.3). Therefore, after the substitu-
tion of the physical fields, these operators do not give rise
to anomalous three- or four-gauge-boson couplings; see
Sect. 6. However, these operators contribute to the γγH
vertex.

In the next section we shall analyse the consequences of
the effective Lagrangian (2.21) and of the diagonalisation
(3.18) etc. for the gauge-boson–fermion couplings.

4 Gauge-boson–fermion interactions
and electroweak parameters

The Lagrangian (2.21) contains the two gauge couplings
g and g′. Apart from that it contains two parameters µ
and λ from the Higgs potential, nine fermion masses, four
parameters of the CKM matrix V , and ten anomalous
couplings hi. We can express the original parameters µ
and λ in terms of mH and v according to

µ2 =
m′ 2

H

2
=

1
2

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

))
m2

H , (4.1)

λ =
m′ 2

H

2v2 =
1

2v2

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

))
m2

H . (4.2)

We call g, g′ and v the electroweak parameters. We denote
the scheme that uses as input the parameters from the La-
grangian (2.21), but mH and v instead of µ and λ, by PL;
see Table 3. The quantities s′

W, c′W and e′, which are the
sine and cosine of the weak mixing angle and the positron
charge if we set all anomalous couplings to zero, are given
in terms of the electroweak parameters in (3.3), (3.4) and
(3.5), and this leads to the standard relations for the elec-
troweak observables. However, with non-zero anomalous
couplings, that is with the full Lagrangian (2.21), the re-
lations of the three parameters g, g′ and v to observables
depend on the anomalous couplings.

In this section we take a look at the gauge-boson–
fermion interactions and introduce two more sets of elec-
troweak input parameters; see Table 3. In these schemes,
that we call PZ and PW , we choose in place of g, g′ and
v as free parameters the fine structure constant at the

Table 3. Three parameter sets used in the analysis: PL, PZ and PW schemes

parameters PL scheme PZ scheme PW scheme

electroweak g, g′, v α(mZ), GF, mZ α(mZ), GF, mW

Higgs-boson mass mH mH mH

fermion masses mu,. . . , mτ mu,. . . , mτ mu,. . . , mτ

4 CKM parameters V V V

10 anomalous couplings hW ,. . . , h
(3)
ϕ hW ,. . . , h

(3)
ϕ hW ,. . . , h

(3)
ϕ
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Z scale, α(mZ), Fermi’s constant GF, and the mass of the
Z or W boson, respectively. For our numerics we take

1/α(mZ) = 128.95(5),

GF = 1.16639(1) × 10−5 GeV−2 (4.3)

from Sect. 16.3 of [41] and from [35], respectively. More-
over, from [35], we use in the PZ scheme

mZ = 91.1876(21) GeV, (4.4)

and in the PW scheme

mW = 80.423(39) GeV. (4.5)

The small errors on the quantities (4.3) to (4.5) are neg-
ligible for our purposes and will be neglected below. We
use as input parameter α(mZ) and not the more precisely
known α(0), since most of the observables which we con-
sider below refer to a high scale of at least mZ . In the
following we will denote by e the positron charge at mZ ,

e =
√

4πα(mZ), (4.6)

and refer to e as the physical positron charge. This is legit-
imate in tree-level calculations. How we include radiative
corrections in our calculations will be discussed in Sect. 5
below.

We use the PZ scheme for all LEP and SLC observ-
ables that we consider in Sect. 5. In the scheme PZ , one
can calculate the W mass mSM

W in the SM with a certain
theoretical accuracy. Using the effective Lagrangian (2.21)
instead of the SM Lagrangian gives a different prediction,
mW . Indeed, as we will see in Sect. 5, two anomalous cou-
plings have an impact on mW in the PZ scheme. How-
ever, for our analysis of e+e− → WW in Sect. 6.2 the use
of the PZ scheme with mW depending on the anomalous
couplings is very inconvenient. In [10,11] mW is assumed
to be a fixed parameter – as is legitimate and usually
done in the form-factor approach – and not expanded in
anomalous couplings. This is for a good reason: a change
of mW changes the kinematics of e+e− → WW and the
reconstruction of the final state. Therefore, in Sect. 6.2 we
use the PW scheme with mW instead of mZ as input. In
this case the Z mass is a parameter that depends on the
anomalous couplings hi.

Next we consider the fermion–gauge-boson-interaction
part Lint of the Lagrangian (2.21). Since we have not ex-
plicitly added any gauge-boson–fermion operators we get
– in the original parameters – the SM expression. In terms
of the fields A′

µ, Z ′
µ and W ′±

µ , (3.1) and (3.2), we have thus
(see (22.77) and (22.123) of [20])

Lint = −e′
(
A′

µJ µ
em +

1
s′
Wc

′
W
Z ′

µJ ′µ
NC

+
1√
2s′

W

(
W ′+

µ J µ
CC + H.c.

))
(4.7)

with the SM currents

J µ
em = ψγµ(T3 + Y)ψ, (4.8)

J ′µ
NC = ψγµT3ψ − s′ 2

WJ µ
em, (4.9)

J µ
CC = ψγµ(T1 + iT2)ψ. (4.10)

Here ψ is the spinor for all lepton and quark fields.
With the mere SM Lagrangian, e′ is the physical positron
charge. Including the dimension-six operators we can ex-
press the interaction terms through the physical fields us-
ing (3.24) to (3.27):

Lint = −e
(
AµJ µ

em +GNCZµJ µ
NC

+GCC
(
W+

µ J µ
CC + H.c.

))
, (4.11)

where the physical positron charge (at the Z scale) is given
by

e =
√

4πα(mZ) =
e′
√
d
, (4.12)

and the physical neutral current by

J µ
NC = ψγµT3ψ − s2effJ µ

em (4.13)

with
s2eff ≡ sin2 θlept

eff = s′ 2
W +

b

d
s′
Wc

′
W. (4.14)

The neutral- and charged-current couplings are

GNC =
1

s′
Wc

′
W

d√
t
,

GCC =
1√
2s′

W

√
d√

1 − hϕW

.

(4.15)

The electromagnetic, the neutral- and the charged-
current interactions are modified by the anomalous cou-
plings in a universal way for fermions with the same quan-
tum numbers. With our definition (4.14) of the effective
leptonic weak mixing angle the neutral current (4.13) has
the same form as in the SM, cf. (4.9). We write the neutral
current as

J µ
NC =

∑
f

1
2
f
(
gf
Vγ

µ − gf
Aγ

µγ5

)
f, (4.16)

where f denotes any fermion. Then we find for the vector
and axial-vector neutral-current couplings of leptons

g�
V = 2s2eff − 1

2
, g�

A = −1
2
, (4.17)

with � = e, µ, τ . Using (4.17), we find the usual expression
for s2eff [39]:

sin2 θlept
eff =

1
4

(
1 − g�

V

g�
A

)
. (4.18)

Fermi’s constant is given by two charged-current inter-
actions in the low-energy limit where the W -boson prop-
agator becomes point-like; see e.g. Sect. 22.3 of [20]:

GF =
√

2e2

4m2
W

G2
CC. (4.19)
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It is related to the vacuum expectation value v of the
original Higgs field ϕ, see (2.12), through

v =
(√

2GF

)−1/2 (
1 + h(1)

ϕ /2
)−1/2

. (4.20)

This is obtained by inserting in (4.19) for e, GCC and mW

the expressions following from (4.12), (4.15) and (3.23),
respectively. For h(1)

ϕ = 0, (4.20) becomes the tree-level
SM relation between v and GF. The parameter λ from
the Higgs potential is therefore, cf. (4.2),

λ =
GFm

2
H√

2

(
1 +

1
2

(
h(1)

ϕ + h(3)
ϕ

))(
1 + h(1)

ϕ /2
)
. (4.21)

In the following two subsections we determine how the
remaining original parameters of the Lagrangian (2.21)
are related to our input parameters in the PZ and PW

schemes. Knowing these relations one can express all con-
stants in the Lagrangian by either of the two electroweak
parameter sets plus the anomalous couplings hi.

4.1 PZ scheme

We now show how the original parameters in the effective
Lagrangian (2.21), are expressed by the input parame-
ters of the PZ scheme; see Table 3. The physical Z mass
mZ and α(mZ) are given in terms of the PL parameters
in (3.29) and (4.12), respectively. In the PZ scheme the
W mass mW is a derived quantity. The relation of mW

to the PL parameters is given in (3.23). We use (3.23),
the relation m′

W = c′Wm
′
Z , and we express m′

Z by means
of (3.29) to obtain the tree-level result for the squared
W mass in the framework of the effective Lagrangian
(2.21):

m2
W =

t

d

1 + h
(1)
ϕ /2(

1 − hϕW

)(
1 +

(
h

(1)
ϕ + h

(3)
ϕ

)
/2
)c′ 2Wm2

Z ,

(4.22)
Inserting (4.15) and (4.22) in (4.19) we obtain an equation
for s′

W:

s′ 2
W =

1
2

1 −
√√√√1 − e2√

2GFm2
Z

d2

t

1 +
(
h

(1)
ϕ + h

(3)
ϕ

)
/2

1 + h
(1)
ϕ /2

 .

(4.23)
Note that d and t contain s′

W and c′W; see (3.13) to (3.15).
Therefore (4.23) is only an implicit equation for s′

W, which
is not easy to solve exactly. We denote the right-hand side
of (4.23) for the case where all anomalous couplings are
set to zero by s20:

s20 ≡ 1
2

(
1 −

√
1 − e2√

2GFm2
Z

)
,

c20 ≡ 1 − s20.

(4.24)

Hence s0 and c0 are not independent parameters but com-
binations of input parameters in the PZ scheme. In the

SM, they are identical to the sine and cosine of the weak
mixing angle. To linear order in the anomalous couplings
we obtain from (4.23) in the PZ scheme

s′ 2
W = s20

(
1 + c20 (hϕW − hϕB) +

4s0c30
c20 − s20

hWB

+
c20

2 (c20 − s20)
h(3)

ϕ

)
. (4.25)

Expanding (4.14) to first order in the couplings we find in
the PZ scheme

s2eff = s20

(
1 +

c0
s0(c20 − s20)

hWB +
c20

2(c20 − s20)
h(3)

ϕ

)
.

(4.26)
Using (4.25) and (4.26) the quantities s′

W, c′W and s2eff
in (4.13) and (4.15) can be expressed as functions of s0
and anomalous couplings in the linear approximation. The
neutral- and charged-current couplings (4.15) read to first
order in the anomalous couplings in the PZ scheme

GNC =
1
s0c0

(
1 − 1

4
h(3)

ϕ

)
, (4.27)

GCC =
1√
2s0

(
1 +

s0c0
s20 − c20

hWB +
c20

4(s20 − c20)
h(3)

ϕ

)
.

(4.28)

For non-zero anomalous couplings an exact result for the
W -boson mass is, in principle, obtained by inserting the
solution for s′

W from (4.23) into (4.22). Expanding to first
order in the anomalous couplings we obtain in the PZ

scheme

mW = c0mZ

(
1 +

s0c0
s20 − c20

hWB +
c20

4 (s20 − c20)
h(3)

ϕ

)
.

(4.29)
This equation is a relation at tree level. The way in which
radiative corrections are taken into account in our analysis
is explained at the beginning of Sect. 5. For the vacuum
expectation value v we obtain to linear order in the anoma-
lous couplings in the PZ scheme, expanding in (4.20)

v =
(√

2GF

)−1/2 (
1 − h(1)

ϕ /4
)
. (4.30)

4.2 PW scheme

Similarly as in the preceding subsection we now express
various quantities in the PW scheme; see Table 3. Inserting
(4.15) into (4.19) and solving for s′ 2

W we obtain

s′ 2
W =

e2

4
√

2GFm2
W

d

1 − hϕW
. (4.31)

Notice that in this equation d contains s′
W and c′W. There-

fore it is only an implicit equation for s′ 2
W like (4.23). For

the case where all hi are zero the right-hand side of (4.31)
is given by

s21 ≡ e2

4
√

2GFm2
W

, c21 ≡ 1 − s21. (4.32)
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Here s1 and c1 are combinations of input parameters
of PW . Expanding (4.31) to linear order in the anoma-
lous couplings we obtain in the PW scheme

s′ 2
W = s21

(
1 + c21 (hϕW − hϕB) + 2s1c1hWB

)
. (4.33)

We expand (4.14) to first order in the hi:

s2eff = s21

(
1 +

c1
s1
hWB

)
. (4.34)

For the neutral-current coupling (4.15) we find to first
order in the anomalous couplings in PW

GNC =
1
s1c1

(
1 +

s1
c1
hWB

)
. (4.35)

Here due to (4.19) and (4.32) the charged-current coupling
is given exactly by

GCC =
1√
2s1

, (4.36)

and not modified by anomalous couplings. Using the re-
lation m′

Z = m′
W /c′W as well as (3.23) and (3.29) we find

for the squared Z mass in PW

m2
Z =

d

t

(
1 +

(
h

(1)
ϕ + h

(3)
ϕ

)
/2
)(

1 − hϕW

)
1 + h

(1)
ϕ /2

m2
W

c′ 2W
, (4.37)

where for s′
W in d and t the solution to (4.31) has to

be inserted, and c′W =
√

1 − s′ 2
W. So far this is an exact

expression for mZ . To first order in the hi the Z mass is

mZ =
mW

c1

(
1 +

s1
c1
hWB +

1
4
h(3)

ϕ

)
. (4.38)

For the vacuum expectation value v to linear order in
the hi we have the same expression as in the PZ scheme,
(4.30).

5 Limits from LEP and SLC

In this section we discuss the impact of the additional
operators on precision observables measured at LEP and
SLC. As mentioned before we use the PZ scheme in the en-
tire Sect. 5. Our procedure is as follows: We calculate the
tree-level prediction Xtree of an observable in the frame-
work of the effective Lagrangian (2.21). Then Xtree can be
expanded to first order in hi

Xtree = XSM
tree

(
1 +

∑
i

hiX̂i

)
, (5.1)

where XSM
tree is the result if we set all anomalous couplings

to zero, that is the result one obtains from the tree-level
calculation with the mere SM Lagrangian. At higher loop-
order both Xtree and XSM

tree receive corrections. It is well

known how to calculate radiative corrections in the SM;
see for instance [40]. As already mentioned in the intro-
duction radiative corrections can also be evaluated for
a non-renormalisable Lagrangian like ours in (2.21) us-
ing the effective-field-theory techniques; see for instance
[12]. This would result in a renormalisation of the origi-
nal anomalous couplings and in the introduction of fur-
ther anomalous terms of higher dimension with free co-
efficients. Thus, radiative corrections to our anomalous
couplings should only give terms having further suppres-
sion factors α and/or (v/Λ) and will be neglected in the
following. In detail, we expand the complete result X for
an observable as

X = XSM

(
1 +

∑
i

hiX̂i

)
+∆X̃, (5.2)

where XSM is the complete SM result and the X̂i are the
same expressions as in (5.1). The term ∆X̃ contains then
radiative corrections times and to anomalous couplings
and will be neglected in the following. To get bounds on
the hi we insert the experimental values for X and use
the well known higher-order results for XSM. The linear
parts X̂i are obtained from the tree-level expansion (5.1).
The experimental errors δX together with the theoretical
uncertainties δXSM of the SM calculation allow us then
to derive bounds on the hi. The theoretical values XSM

depend on the unknown Higgs mass mH [41] and we shall
discuss the bounds as functions of mH .

As first observable we consider the leptonic mixing an-
gle (4.14) for which we get in the PZ scheme (4.26). There
we can identify s0 from (4.24) as the tree-level SM result

sSM
eff

∣∣
tree = s0. (5.3)

According to (5.2) and (4.26) we set now

s2eff =
(
sSM
eff
)2(

1 +
c0

s0(c20 − s20)
hWB +

c20
2(c20 − s20)

h(3)
ϕ

)
=
(
sSM
eff
)2 (

1 + 3.39hWB + 0.71h(3)
ϕ

)
. (5.4)

Here sSM
eff is the leptonic mixing angle in the SM, includ-

ing radiative corrections, and the numerical values are ob-
tained with (4.3) and (4.4).

The partial widths of the Z into a pair of fermions
calculated from the Lagrangian (2.21) on tree level are

Γff

∣∣
tree =

e2mZ

48π
G2

NCN
f
c χf ,

χf =
(
gf
V

)2
+
(
gf
A

)2
,

(5.5)

where Nf
c = 1 for leptons and Nf

c = 3 for quarks. For neu-
trinos, charged leptons, and for up- and down-type quarks
we get, respectively,
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χν =
1
2
,

χ� =
1
2

− 2s2eff + 4s4eff , (5.6)

χu =
1
2

− 4
3
s2eff +

16
9
s4eff ,

χd =
1
2

− 2
3
s2eff +

4
9
s4eff . (5.7)

In (5.5) we have neglected all fermion masses. Setting all
anomalous couplings to zero we find expressions for the
tree-level partial widths in the SM as in Chapter 25 of
[20]. The partial widths in (5.5) depend on the anoma-
lous couplings through GNC (4.27) and through s2eff in χf .
Expanding (5.5) to first order in the anomalous couplings
and using our prescription (5.2), we obtain the following
results for the invisible partial width, the width into one
pair of charged leptons e+e−, µ+µ− or τ+τ−, the hadronic
and the total widths:

Γinv = Γ SM
inv

(
1 − h

(3)
ϕ

2

)
, (5.8)

Γ�� = Γ SM
��

(
1 +

4s0c0(4s20 − 1)hWB

1 − 6s20 + 16s40 − 16s60
(5.9)

+

(−1 + 2s20 + 4s40
)
h

(3)
ϕ

2 − 4s20(3 − 8s20 + 8s40)

)
,

Γhad = Γ SM
had

(
1 +

4s0c0(44s20 − 21)hWB

45 − 174s20 + 256s40 − 176s60

+

(−45 + 90s20 + 4s40
)
h

(3)
ϕ

90 − 348s20 + 512s40 − 352s60

)
, (5.10)

ΓZ = Γ SM
Z

(
1 +

40s0c0(8s20 − 3)hWB

63 − 246s20 + 400s40 − 320s60

+

(−63 + 126s20 + 40s40
)
h

(3)
ϕ

126 − 492s20 + 800s40 − 640s60

)
. (5.11)

Using (4.3), (4.4) and (4.24) we get numerically

Γinv = Γ SM
inv (1 − 0.50h(3)

ϕ ), (5.12)

Γ�� = Γ SM
�� (1 − 0.47hWB − 0.60h(3)

ϕ ), (5.13)

Γhad = Γ SM
had(1 − 1.12hWB − 0.74h(3)

ϕ ), (5.14)

ΓZ = Γ SM
Z (1 − 0.82hWB − 0.67h(3)

ϕ ). (5.15)

Notice that s2eff , Γ��, Γhad and ΓZ all depend on the cou-
plings hWB and h

(3)
ϕ in a different way. In contrast, at

tree level in the SM as well as with the Lagrangian (2.21)
the hadronic pole cross section σ0

had as well as R0
� , R

0
b

and R0
c [41] depend only on s2eff since they are defined in

terms of ratios of the partial and total widths, such that
the anomalous couplings enter only through the quantities
χf ; see (5.5) to (5.7):

σ0
had =

12π
m2

Z

ΓeeΓhad

Γ 2
Z

, (5.16)

R0
� = Γhad/Γ��, R0

b = Γbb/Γhad, R0
c = Γcc/Γhad.

(5.17)
Note the deviating definition of the leptonic ratio where
Γhad appears in the numerator. Also another group of ob-
servables, the quantities

Af = 2gf
Vg

f
A/χf , (5.18)

and the forward–backward asymmetries

A0,f
FB =

3
4
AeAf , (5.19)

are solely functions of s2eff :

Aν = 1,

A� =
(

1
2

− 2s2eff

)
/χ�, (5.20)

Au =
(

1
2

− 4
3
s2eff

)
/χu,

Ad =
(

1
2

− 2
3
s2eff

)
/χd. (5.21)

We thus find that a large number of the observables
listed in the summary table, Table 16.1, of [41] with the
combined results from LEP1, SLC, LEP2 and W -boson
measurements depend on the anomalous couplings only
through s2eff , that is only through the linear combination
in (5.4). These are the observables

A�(Pτ ), A�(SLD), A0,�
FB, s

2
eff(〈QFB〉),

A0,b
FB, A

0,c
FB, (5.22)

Γinv/Γ��, R
0
b , R

0
c , Ab, Ac, (5.23)

σ0
had, R

0
� . (5.24)

Their functional dependence on s2eff is at tree level the
same for the Lagrangian (2.21) as in the SM. Thus, ne-
glecting again radiative corrections times and to anoma-
lous couplings, we can use the determination of s2eff from
[41] directly for our purposes. From the six observables
(5.22) the following value for s2eff is extracted in Table 15.4
of [41]:

s2eff = 0.23148 ± 0.00017. (5.25)
The errors of the observables (5.23) are much larger than
those of the observables (5.22) and therefore do not affect
this result within rounding errors, which we have checked
explicitly using the tree-level expressions of the observ-
ables (5.23). Among the observables (5.22) the leptonic
ones tend to give smaller values for s2eff than the hadronic
ones. This has recently been mentioned in [42]. We note
that this discrepancy cannot be cured by the anomalous
couplings that we consider in this paper since any choice
for hWB and h(3)

ϕ leads to one particular value of s2eff and
the observables depend on s2eff as in the SM. For the two
observables (5.24) results are given in Table 2.3 (“with lep-
ton universality”) of [41], where they are correlated with
mZ , ΓZ and A0,�

FB:

mZ [GeV] = 91.1875 ± 0.0021, (5.26)
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Table 4. Values of various observables X predicted by the SM
for different Higgs masses. The dependence of their uncertain-
ties δX on mH is negligibly small. Taken from Figs. 15.4, 16.6
and 16.9 of [41]

mH 120 GeV 200 GeV 500 GeV δX

s2
eff 0.23156 0.23180 0.23230 0.00030

ΓZ [GeV] 2.4952 2.4938 2.4902 0.0026
σ0

had [nb] 41.484 41.485 41.489 0.015
R0

� 20.737 20.732 20.723 0.018
mW [GeV] 80.374 80.341 80.269 0.041
ΓW [GeV] 2.0896 2.0880 2.0832 0.0032

ΓZ [GeV] = 2.4952 ± 0.0023, (5.27)
σ0

had [nb] = 41.540 ± 0.037, (5.28)
R0

� = 20.767 ± 0.025, (5.29)

A0,�
FB = 0.0171 ± 0.0010. (5.30)

The correlations given in the same table are, in the order
mZ , ΓZ , σ0

had, R0
� , A

0,�
FB,

1 −0.023 −0.045 0.033 0.055
1 −0.297 0.004 0.003

1 0.183 0.006
1 −0.056

1

 . (5.31)

In our scheme PZ the Z mass is an input parameter. The
forward–backward asymmetry A0,�

FB is already included in
the result for s2eff in (5.25). We thus exclude mZ and A0,�

FB
from (5.26) to (5.31) by projecting the error ellipsoid onto
the subspace of ΓZ , σ0

had and R0
� . Since ΓZ depends on

the couplings hWB and h(3)
ϕ in a different way than s2eff we

can in this way extract values on these two couplings from
(5.25) to (5.31). The SM predictions for σ0

had, R0
� and in

particular for ΓZ and s2eff depend on mH . Their numerical
values are taken from Figs. 15.4 and 16.6 of [41]. For the
convenience of the reader we list these numbers in Table 4.
In Table 5 we list the results for the anomalous couplings
extracted from (5.25), ΓZ , σ0

had and R0
� for a Higgs mass of

120 GeV, 200 GeV and 500 GeV, respectively. The errors
include the uncertainties in the SM predictions, which are
mainly due to the uncertainties in ∆α

(5)
had(m2

Z), αs(m2
Z)

and mt.
We now want to include in the analysis of the anoma-

lous couplings the data of W -mass and -width measure-
ments. The expansion of mW has already been given in
(4.29). For the total width of the W boson we get from
(4.11), (4.28) and (4.29) at tree level, neglecting fermion
masses,

ΓW |tree =
3e2mW

8π
G2

CC (5.32)

= Γ SM
W

∣∣
tree

(
1 +

3s0c0
s20 − c20

hWB +
3c20

4 (s20 − c20)
h(3)

ϕ

)
,

Table 5. Prediction of CP conserving couplings in units of
10−3 from the observables listed in the first row. For s2

eff the
result (5.25) from the observables (5.22) is used. The results are
computed for a Higgs mass of 120 GeV, 200 GeV and 500 GeV,
respectively. The errors δh on the couplings and the correla-
tion between the two errors are independent of the Higgs mass
within rounding errors. The correlation is −86%

s2
eff , ΓZ , σ0

had, R0
�

mH 120 GeV 200 GeV 500 GeV δh × 103

hWB ×103 −0.26 −0.44 −0.68 0.81
h

(3)
ϕ ×103 0.38 −0.24 −2.08 2.81

Table 6. Same as Table 5, but here mW and ΓW are included
as observables. The correlation of the errors is −88%

s2
eff , ΓZ , σ0

had, R0
� , mW , ΓW

mH 120 GeV 200 GeV 500 GeV δh × 103

hWB ×103 −0.04 −0.20 −0.43 0.79
h

(3)
ϕ ×103 −1.17 −1.88 −3.81 2.39

where Γ SM
W

∣∣
tree = 3e2c0mZ/(16πs20). In the PZ scheme the

total width ΓW depends on the same linear combination of
anomalous couplings as mW , see (4.29), and is three times
more sensitive to changes of hWB and h

(3)
ϕ . Now we use

again our general prescription (5.2) and insert numerical
values for s0 and c0 following from (4.3) and (4.4). We
obtain then

mW = mSM
W (1 − 0.78hWB − 0.36h(3)

ϕ ), (5.33)

ΓW = Γ SM
W (1 − 2.35hWB − 1.07h(3)

ϕ ). (5.34)

We recall that in the presence of anomalous couplings all
charged-current interactions are modified in a universal
way. Consequently, we obtain the same relation (5.32) for
all partial widths of the W boson. The branching ratios
of the W boson are therefore not changed by anomalous
effects, in contrast to those of the Z boson. We use the ex-
perimental values given in (16.1) and (16.2) of [41] derived
from LEP, SPSC and Tevatron data

mW = 80.449 ± 0.034, (5.35)
ΓW = 2.136 ± 0.069, (5.36)

where the error correlation is −6.7%. Using the SM values
for mW and ΓW from Fig. 16.9 of [41], which are shown
in Table 4 for three different Higgs masses, and combining
the bounds frommW and ΓW with the results from Table 5
we get the bounds on the couplings hWB and h(3)

ϕ as listed
in Table 6.

6 Three- and four-gauge-boson couplings

We now turn to the bounds on the anomalous couplings
hi from measurements of γWW and ZWW couplings at
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LEP2 [41] and the prospects to measure these couplings
at a future LC. The former is done in Sect. 6.1 using the
scheme PZ , the latter in Sect. 6.2 using PW and suitably
defined effective TGCs. A general parameterisation of the
two triple-gauge-boson vertices by an effective Lagrangian
in the ELa approach (see Sect. 1) requiring only Lorentz
invariance and hermiticity consists of 14 real parameters.
A common parameterisation used in the literature is the
one of Hagiwara, Peccei, Zeppenfeld and Hikasa [3]:

LHPZH
V WW

igV WW
= gV

1 (W+
µνW

−µ −W−
µνW

+µ)V ν (6.1)

+ κV W
+
µ W

−
ν V

µν +
λV

m2
W

W+
λµW

−µ
νV

νλ

+ igV
4 W

+
µ W

−
ν (∂µV ν + ∂νV µ)

− igV
5 ε

µνρσ
(
W+

µ (∂ρW
−
ν ) −W−

ν (∂ρW
+
µ )
)
Vσ

+ κ̃V W
+
µ W

−
ν Ṽ

µν +
λ̃V

m2
W

W+
λµW

−µ
ν Ṽ

νλ

with V = γ or Z. The overall constants for the photon and
Z vertices are defined as follows:

gγWW = −e, gZWW = −e cot θW, (6.2)

where e is the positron charge. Then we have in the SM
at tree level

gV
1 = 1, κV = 1, (6.3)

and all other couplings equal to zero. We write ∆gV
1 =

gV
1 − 1 and ∆κV = κV − 1 as usual. The ZWW couplings

involve the mixing angle θW of the SM. In the ELa ap-
proach this θW is well defined. It is also unique at least at
tree level.

Note that in the FF approach the same expression (6.1)
is usually written down but allowing the coupling con-
stants to be complex numbers. Then LHPZH

V WW should not
be considered as an effective Lagrangian but only as a con-
venient shorthand description for the VWW form factors
generated by using (6.1) in Feynman rules to first order.
In [10,11] the parameterisation (6.1) is used and bounds
on the anomalous couplings are computed by means of op-
timal observables using the tree-level expressions for the
differential cross section of e+e− → WW . Given the ex-
pected accuracy at a future LC it will in general be neces-
sary to take into account radiative corrections. How this
can be done in the framework of optimal observables is ex-
plained in Sect. 3 of [10]. One can apply to the measured
cross section the SM radiative corrections in the reverse
to obtain a Born-level cross section. Neglecting again ra-
diative corrections times and to anomalous couplings this
Born-level cross section can be analysed using tree graphs
where for the SM (6.3) is valid.

Here we want to compare the parameters hi of our
Lagrangian (2.21) – which is in the ELb approach – to
the parameters in (6.1). From the outset we must make it
clear that such a comparison raises problems. In the ELa
approach the dimension ≤ 4 terms in the Lagrangian are
exactly the SM ones. In the ELb approach investigated in
the present paper on the other hand the dimension ≤ 4

terms receive anomalous contributions. The relations be-
tween the hi and the couplings gV

1 ,. . . , λ̃V of (6.1) which
we shall derive below are thus only valid supposing that
the anomalous contributions to dimension ≤ 4 terms are
negligible. For a specific process one can take into account
these contributions by defining effective TGCs, as we shall
do in Sect. 6.2 below for the reaction e+e− → WW .

We now derive the relations of the parameters of (6.1)
to the hi in the approximation where terms of the La-
grangian (2.21) that are of second or higher order in hi

are neglected. The sine of the angle θW in (6.2) will be
identified with s0 in the PZ scheme and with s1 in the
PW scheme. The fact that we have an ambiguity here
reflects again the differences of the ELa and ELb ap-
proaches.

We denote by LγWW and LZWW the parts of the La-
grangian (2.21) – expressed in terms of the physical fields
W±

µ , Aµ and Zµ – that consist of two W boson fields and
one photon or Z-boson field, respectively. Without any
approximation the γWW part is given by

LγWW

(−ie)
=
(
W+

µνW
−µ −W−

µνW
+µ
)
Aν (6.4)

+
(

1 +
c′W
s′
W

hWB

(1 − hϕW )

)
W+

µ W
−
ν A

µν

+
6
√

2GFs
′
W

e
√
d

(1 + h
(1)
ϕ /2)

(1 − hϕW )
W+

λµW
−µ

ν

(
hWAνλ + hW̃ Ãνλ

)
+
c′W
s′
W

hW̃B

(1 − hϕW )
W+

µ W
−
ν Ã

µν ,

where Ãµν = (1/2)εµνρσA
ρσ, and d is defined in (3.15). To

obtain the term proportional to hW̃ in (6.4) we have used
the Shouten identity. Depending on whether we are in the
scheme PZ or PW , s′

W is a solution to (4.23) or (4.31),
respectively. The ZWW part reads

LZWW

(−ie)
= f−

(
W+

µνW
−µ −W−

µνW
+µ
)
Zν (6.5)

+
(
f− − f+

hWB

1 − hϕW

)
W+

µ W
−
ν Z

µν

+ f̂
(1 + h

(1)
ϕ /2)

(1 − hϕW )
W+

λµW
−µ

ν

(
hWZνλ + hW̃ Z̃νλ

)
− f+

hW̃B

1 − hϕW
W+

µ W
−
ν Z̃

µν ,

where Z̃µν = (1/2)εµνρσZ
ρσ and

f+ =
1√
t

(
d+

bc′W
s′
W

)
, f− =

1√
t

(
dc′W
s′
W

− b

)
, (6.6)

f̂ =
6
√

2GFs
′
W

e
√
d

f−. (6.7)

Again, for the term in (6.5) proportional to hW̃ the
Shouten identity is applied. Expanding the coefficients of
the operators in (6.4) and (6.5) to first order in the anoma-
lous couplings and comparing with the Lagrangian (6.1)
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we find the following relations between the two sets of
couplings, in the PZ scheme:

∆gγ
1 = 0, ∆κγ =

c0
s0
hWB , (6.8)

∆gZ
1 =

s0
c0 (s20 − c20)

hWB +
h

(3)
ϕ

4 (s20 − c20)
,

∆κZ =
2s0c0
s20 − c20

hWB +
h

(3)
ϕ

4 (s20 − c20)
, (6.9)

λZ = 6s0c20
√

2GFm
2
ZhW /e,

λγ = 6s0c20
√

2GFm
2
ZhW /e,

(6.10)

κ̃Z = −s0
c0
hW̃B , κ̃γ =

c0
s0
hW̃B , (6.11)

λ̃Z = 6s0c20
√

2GFm
2
ZhW̃ /e,

λ̃γ = 6s0c20
√

2GFm
2
ZhW̃ /e,

(6.12)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.13)

Equations (6.8) to (6.10) relate CP conserving couplings,
whereas (6.11) and (6.12) relate CP violating ones. The
couplings gγ

4 and gZ
4 are CP violating whereas gγ

5 and gZ
5

are CP conserving. From (6.8) to (6.13) we see that in our
ELb framework the anomalous γWW and ZWW vertices
depend only on five anomalous parameters, three of them
CP conserving (hW , hWB , h(3)

ϕ ), two of them CP violat-
ing (hW̃ , hW̃B). The 14 anomalous couplings in (6.1) thus
obey 9 relations. These well known gauge relations are

∆gγ
1 = 0, (6.14)

∆κZ = ∆gZ
1 − s20

c20
∆κγ , (6.15)

λZ = λγ , (6.16)

κ̃γ = − c20
s20
κ̃Z , (6.17)

λ̃γ = λ̃Z , (6.18)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.19)

However, one has to keep in mind that although the
number of TGCs is reduced in the ELb approach com-
pared to the ELa approach anomalous effects can occur
at other vertices or propagators; see e.g. our treatment of
the reaction e+e− → WW in Sect. 6.2. Notice also that
the gauge relations (6.14) to (6.19) do not generally hold
in an SU(2) × U(1) invariant effective theory, but rather
stem from the fact that we have restricted ourselves to
operators of dimension ≤ 6. If one adds to the Lagrangian
(2.21) suitable operators of higher dimension one can ob-
tain a gauge invariant Lagrangian where all 14 anomalous
couplings in (6.1) are independent. For this, operators up
to dimension 12 are required [4], where for each additional
dimension the effects are suppressed by an additional fac-
tor (v/Λ). The so-called gauge relations (6.14) to (6.19)
are thus rather a low-energy approximation than a result
from gauge invariance.

Using the scheme PW , we find in the linear approxi-
mation instead of (6.8) to (6.13)

∆gγ
1 = 0, ∆κγ =

c1
s1
hWB , (6.20)

∆gZ
1 = 0, ∆κZ = −s1

c1
hWB , (6.21)

λZ = 6s1
√

2GFm
2
WhW /e,

λγ = 6s1
√

2GFm
2
WhW /e,

(6.22)

κ̃Z = −s1
c1
hW̃B , κ̃γ =

c1
s1
hW̃B , (6.23)

λ̃Z = 6s1
√

2GFm
2
WhW̃ /e,

λ̃γ = 6s1
√

2GFm
2
WhW̃ /e,

(6.24)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.25)

Notice that h(3)
ϕ does not enter here in PW such that the

number of couplings to describe the anomalous γWW and
ZWW vertices in the PW scheme is one less than in the
PZ scheme. We have here two CP conserving couplings
(hW , hWB) and two CP violating ones (hW̃ , hW̃B). The
gauge relations (6.14) to (6.19) also hold in the scheme PW

if we substitute s0 and c0 by s1 and c1. In the PW scheme
we have a further gauge relation

∆gZ
1 = 0. (6.26)

Thus we find in our locally SU(2) × U(1) symmetric the-
ory that the number of independent CP conserving TGCs
is three if we choose the PZ scheme. This agrees with the
results of [43]. If we choose PW , which is actually the con-
venient scheme for the direct measurement of TGCs in
W -boson-pair production there is one TGC less. However,
the hi also enter in fermion–boson vertices, Higgs-boson
vertices and boson masses. In fact, we shall see in Sect. 6.2
that the coupling h(3)

ϕ affects the differential cross section
of e+e− → WW although we use the scheme PW .

Without approximation the γγWW part of (2.21) is

LγγWW

(−e2) =
(
W+

µ W
−µAνA

ν −W+
µ W

−
ν A

µAν
)

(6.27)

− 6s′
W

ev2
√
d

hWAλµ + hW̃ Ãλµ

(1 − hϕW )

×
( (
AµW+

ν −AνW
+µ
)
W−νλ + H.c.

)
.

Using the formulae of Sect. 4 it is straightforward to cal-
culate the linear approximation of (6.27) for the two
schemes.

The terms containing two photon fields and one Higgs
field in the effective Lagrangian (2.21) after diagonalisa-
tion are, without approximation,

vd

√
1 +

(
h

(1)
ϕ + h

(3)
ϕ

)
/2 LγγH (6.28)

=
1
2
(
s′ 2
WhϕW + c′ 2WhϕB − 2c′Ws

′
WhWB

)
AµνA

µνH

+
(
s′ 2
WhϕW̃ + c′ 2WhϕB̃ − c′Ws

′
WhW̃B

)
ÃµνA

µνH.



O. Nachtmann et al.: Anomalous gauge-boson couplings and the Higgs-boson mass 153

Table 7. Contributions of the SM Lagrangian and of the anomalous operators to
different vertices in linear order in the hi after the simultaneous diagonalisation. Only
those vertices are listed that are relevant for our observables. This does not coincide
with the contributions to operators of the respective structure before the simultaneous
diagonalisation; see Table 2. The coupling h

(3)
ϕ contributes to the ZWW vertex in the

scheme PZ but not in PW

SM hW hW̃ hϕW hϕW̃ hϕB hϕB̃ hWB hW̃B h
(1)
ϕ h

(3)
ϕ

γWW
√ √ √ √ √

ZWW
√ √ √ √ √

PZ

γγWW
√ √ √

γγH
√ √ √ √ √ √

In the linear approximation we simply have to drop the
square root, and substitute the factor vd on the left-
hand side by (

√
2GF)−1/2 and s′

W (c′W) on the right-hand
side by s0 (c0) in the PZ scheme, and by s1 (c1) in the
PW scheme.

We summarise in Table 7 which couplings contribute to
the γWW , ZWW , γγWW and γγH vertices if we con-
sider only terms that are linear in the hi.

6.1 Bounds from LEP2

For the CP conserving couplings we use the values from
Table 11.7 in [41]

∆gZ
1 = 0.051 ± 0.032, (6.29)

∆κγ = −0.067 ± 0.061,
λγ = −0.067 ± 0.038.

The errors given in [41] are not symmetric. Here we make
the conservative choice of taking the larger of the lower
and upper errors. The correlations, in the order∆gZ

1 ,∆κγ ,
λγ from the same reference, are1 0.23 −0.30

1 −0.27
1

 . (6.30)

The remaining two non-zero CP conserving couplings
∆κZ and λZ are not considered as independent in [41],
but are assumed to be given by the gauge relations (6.15)
and (6.16). From the values (6.29) and (6.30) we there-
fore obtain, using (6.8) to (6.10), the following values and
errors for our anomalous couplings:

hW = −0.069 ± 0.039,
hWB = −0.037 ± 0.033, (6.31)

h(3)
ϕ = −0.029 ± 0.112,

and the correlations, in the order hW , hWB , h(3)
ϕ , 1 −0.27 0.36

1 −0.80
1

 . (6.32)

We repeat that these constraints are only approximate as
in our ELb framework non-SM effects do not only occur
at the three-boson vertices, but also at the fermion–boson
vertices and through mW . The bounds (6.31) on the hi

are thus only valid to the approximation that these ef-
fects are negligible.2 Moreover, in contrast to Sect. 5, no
radiative corrections are included in our results here. The
constraints on hWB and h(3)

ϕ derived from TGC measure-
ments are much weaker than the constraints from Table 6.
Combining the results from Table 6 with (6.31) and (6.32)
we find the values and errors as listed in Table 8. These
are the final values for the CP conserving couplings that
we can derive from LEP1, SLC, LEP2 and W -boson mea-
surements. The value and error of hW is almost indepen-
dent of mH . Electroweak data predicts a value for hW of
about −0.06. Since the errors on hWB and h(3)

ϕ are almost
uncorrelated with the error on hW , we can consider the
bounds on hWB and h

(3)
ϕ separately. Their error ellipses

are shown in Fig. 1. Interestingly, a large Higgs mass is
allowed by the data if hWB and h(3)

ϕ are of order ∼ 10−3.
For the CP violating couplings we use the weighted

average of the single parameter measurements given in
[44,45]

λ̃Z = 0.067 ± 0.080, κ̃Z = −0.018 ± 0.046. (6.33)

In these analyses the relations (6.17) and (6.18) of the
CP violating photon couplings with the CP violating
Z couplings are assumed to hold. Using the values (6.33)
we get from (6.11) and (6.12) the results listed in Table 9.
These results are independent of mH . Since – in contrast
to the CP conserving couplings – the CP violating cou-
plings do not affect the boson–fermion couplings or the
W mass these bounds are accurate in the sense that no
such effects are neglected.

Bounds at 95% C.L. on anomalous TGCs have been
determined by the CDF collaboration [21] and the DO/
collaboration [22]. The latter, who gives the tighter

2 In the following subsection we show that one can take into
account the effects from anomalous fermion–boson couplings
and anomalous boson masses by defining effective TGCs. How-
ever, to this end each physics reaction must be considered sepa-
rately. Here we use the combined results from various processes
and one cannot easily avoid this simplification.



154 O. Nachtmann et al.: Anomalous gauge-boson couplings and the Higgs-boson mass

hWB × 103

h
(3)
ϕ × 103mH = 500 GeV

200 GeV
120 GeV 1

1

-1
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Fig. 1. Error ellipses of hWB and h
(3)
ϕ for different Higgs masses

Table 8. Final results from already existing data for CP conserving couplings in units
of 10−3 for a Higgs mass of 120 GeV, 200 GeV and 500 GeV. The anomalous couplings
are extracted from the observables listed in the first row using (5.25). The errors δh
and the correlations of the errors are independent of the Higgs mass with the accuracy
given here. The correlation matrix is given on the right

s2
eff , ΓZ , σ0

had, R0
� , mW , ΓW , TGCs

mH 120 GeV 200 GeV 500 GeV δh × 103

hW ×103 −62.4 −62.5 −62.8 36.3 1 −0.007 0.008
hWB ×103 −0.06 −0.22 −0.45 0.79 1 −0.88
h

(3)
ϕ ×103 −1.15 −1.86 −3.79 2.39 1

Table 9. Final results from already existing data for CP vio-
lating couplings. The anomalous couplings are extracted from
TGC measurements at LEP2 in various processes

TGCs

h δh

hW̃ 0.068 0.081
hW̃B 0.033 0.084

constraints, also quotes central values and 68% C.L.
limits on λγ and ∆κγ . They are λγ = 0.00+0.10

−0.09 and
∆κγ = −0.08+0.34

−0.34, and therefore not tighter than the con-
straints (6.29) from LEP2. Moreover, the values (6.29)
are results where all three parameters are measured at
a time. In [21] also 95% C.L. limits on two CP violat-
ing couplings are determined, viz. −0.7 < λ̃γ < 0.7 and
−2.3 < κ̃γ < 2.2. These results can be transformed using
(6.17) and (6.18) into bounds on the couplings λ̃Z and
κ̃Z at 68% C.L. These resulting bounds are less stringent
than the LEP2 bounds (6.33). We thus conclude that an
inclusion of the bounds from [21,22] would not have a
considerable effect on our calculated bounds on the hi.

As mentioned above, see (2.23), a natural choice for
the coefficients hi in (2.22) is hi = αiv

2/Λ2 where Λ is
the new-physics scale and the αi are of order one. Setting
αi = 1 and using the numbers from Tables 8 and 9 we find

lower bounds Λi on the scale of new physics according to

Λi =
v√|hi| + δhi

. (6.34)

These bounds are listed in Table 10. New physics that
gives rise to non-zero hW , hW̃ or hW̃B may be seen
at a LC in the one-TeV-range. Those affecting h

(3)
ϕ can

lead to visible effects at a multi-TeV machine like CLIC,
whereas hWB will probably be out of reach in the near
future. We remark that relations between the Higgs mass
and the scale of new physics in an effective-Lagrangian
approach have also been obtained using renormalisation
group methods, see [46]. There operators of dimension six
containing the Higgs and the top-quark fields are included
in the effective Lagrangian, and triviality and vacuum-
stability arguments are applied.

To first order in the anomalous couplings none of
the observables considered so far depends on hϕW , hϕW̃ ,

hϕB , hϕB̃ or h
(1)
ϕ . This does not change when taking

into account optimal observables for e+e− → WW with
the effective couplings; see Sect. 6.2. However, four cou-
plings that cannot be determined with present data or
in e+e− → WW at a future LC have an impact on the
differential cross section for W -pair production at a pho-
ton collider, which we will study in a future work [34].
To be precise, one linear combination of hϕW and hϕB

and one linear combination of hϕW̃ and hϕB̃ can be mea-
sured including data from this reaction. Then only three
anomalous-coupling combinations, that is the other two
linear combinations of these four couplings as well as h(1)

ϕ ,
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Table 10. Lower bounds Λi on the new-physics scale Λ in TeV
from the values of different anomalous couplings hi obtained
from the results in Tables 8 and 9 according to (6.34). The
numbers are given for a Higgs mass of 120 GeV, 200 GeV and
500 GeV, respectively

mH [GeV] 120 200 500

hW 0.78 0.78 0.78
hWB 8.4 7.7 7.0
h

(3)
ϕ 4.1 3.8 3.1

hW̃ 0.64 0.64 0.64
hW̃B 0.72 0.72 0.72

cannot be determined. We summarise this result in Ta-
ble 11 where we show which coupling combinations can be
measured by means of which observables. In the right col-
umn we list all observables that we use in this work or in
[34].

6.2 Effective couplings for e+e− → WW

Here we would like to derive bounds on the anoma-
lous couplings hi from results obtained for the reaction
e+e− → WW in [10,11]. There all 14 complex parame-
ters to describe the general γWW and ZWW vertices are
taken into account, see (6.1), but the fermion–boson ver-
tices,mZ andmW are supposed to be as in the SM. There-
fore we have to analyse carefully to which extent bounds
on our anomalous couplings hi can be obtained from [10,
11]. Consider the two cases, the ELb framework using the
Lagrangian (2.21) with all anomalous couplings and the
ELa framework of the Lagrangian (6.1) with only anoma-
lous TGCs. In both cases the process e+e− → WW has to
be calculated at tree level from three diagrams, t-channel
neutrino exchange, s-channel photon and s-channel Z ex-
change, see Figs. 2 to 4. The various anomalous contribu-
tions in each figure are explained below. Given the pro-
jected accuracy at a future LC, it will in general be nec-
essary to take into account radiative corrections to the
process e+e− → 4 fermions within the SM, which have

been worked out in detail in the literature [47]. How these
corrections can be included in an analysis with optimal
observables is explained in Sect. 3 of [10]. See also the dis-
cussion after (6.3) above. In [10,11] to linear order in the
anomalous TGCs the errors on their imaginary parts are
not correlated with the errors on their real parts. This is
because integrated observables are used and the respec-
tive anomalous amplitudes obtain different signs under
the combined discrete symmetry CPT̃ of CP and a näıve
time reversal T̃ , that is, the simultaneous flip of all spins
and momenta without interchanging initial and final state.
Thus, whether or not the imaginary parts are included in
the analyses of [10,11] plays no rôle when we look at the
sensitivity to the real parts. For the real parts, the er-
rors on the CP conserving couplings are not correlated
with the ones on the CP violating couplings in the lin-
ear approximation, and the two groups of couplings can
be considered separately [10,11]. In principle, the deriva-
tion of bounds on the hi would require a complete calcu-
lation of the process e+e− → WW → 4 fermions in the
framework of the Lagrangian (2.21). To first order in the
couplings the errors on CP conserving and CP violat-
ing couplings are not correlated also in this case. How-
ever, in such an analysis also anomalous effects from the
couplings of the Z boson to fermions, which modify the
s-channel Z exchange as well as anomalous contributions
to mW (mZ) must be taken into account if we use the
scheme PZ (PW ); see (4.29) and (4.38). Furthermore, in
the scheme PZ the anomalous couplings have an impact
on the couplings of the W boson to fermions, whereas
in PW they have not due to (4.36). As mentioned in the
introduction of Sect. 4, mW is treated as a fixed param-
eter in [10,11]. Thus for the analysis in this section it is
convenient to choose the PW scheme. Moreover this sim-
plifies the analysis because in PW the neutrino-exchange
amplitude contains no anomalous effects. The CP violat-
ing couplings appear in the reaction e+e− → WW only at
the three-gauge-boson vertices. Thus the errors and cor-
relations of these couplings can be obtained directly from
the results in [10,11] by using (6.23) to (6.25). In contrast,
in the CP conserving case we obtain anomalous contri-
butions to the vertices eeZ, γWW and ZWW and to mZ

Table 11. Anomalous couplings and observables for their measurement in the respec-
tive schemes, in which they are considered in our studies. With the ensemble of all
these observables five couplings can be measured independently. In addition, of the
two couplings hϕW and hϕB one linear combination can be extracted. The same is
true for hϕW̃ and hϕB̃

PZ scheme
hWB , h

(3)
ϕ s2

eff , ΓZ , σ0
had, R0

� , mW , ΓW

hW , hWB , h
(3)
ϕ 3 CP conserving TGCs

hW̃ , hW̃B 2 CP violating TGCs

PW scheme
hW , hWB , h

(3)
ϕ , hW̃ , hW̃B effective couplings in e+e− → WW

hW , hWB , hW̃ , hW̃B ,

(s2
1hϕW + c2

1hϕB), (s2
1hϕW̃ + c2

1hϕB̃)

}
optimal observables for γγ → WW
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Fig. 2. Neutrino-exchange diagram
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Fig. 3. Photon-exchange diagrams. SM diagram a and dia-
gram with anomalous γWW couplings b

from the Lagrangian (2.21). Therefore in the framework
of the Lagrangian (2.21), all diagrams of Figs. 2 to 4 con-
tribute to e+e− → WW in zeroth or linear order in the hi.
The blobs denote anomalous couplings (without the SM
contribution to the respective vertex) and the diagram
(b) in Fig. 4 with the box denotes s-channel Z-boson ex-
change with a modified Z mass in the propagator minus
the SM diagram, which is the diagram (a). Notice that the
W -decay amplitudes remain unchanged by the hi in the
PW scheme.

After this discussion of the calculation of the amplitude
for e+e− → WW in our present ELb approach we com-
pare it to the FF calculation of [10,11] which can be con-
sidered as an ELa approach if we set all imaginary parts
of coupling constants there to zero. In the ELa framework

of [10,11] the diagrams of Figs. 2 and 3 and only (a) and
(d) of Fig. 4 occur. We will now show that the diagrams
(b) and (c) of Fig. 4, that is the anomalous effects at the
eeZ coupling and in mZ , can be completely shifted to
diagram (b) in Fig. 3 and diagram (d) in Fig. 4 by defin-
ing new effective γWW and ZWW couplings. For given
values of the couplings hi, which modify the TGCs, the
fermion–boson couplings and mZ in the ELb framework
of the Lagrangian (2.21), we can compute values for these
effective anomalous TGCs. Then calculating the process
e+e− → WW in the ELa framework (6.1) of [10,11] with
merely (effective) anomalous TGCs leads to the same dif-
ferential cross section as calculating it with all anomalous
vertices in ELb. This means the amplitudes for the process
are only computed from the diagram in Fig. 2, both dia-
grams in Fig. 3 and diagrams (a) and (d) in Fig. 4, but with
suitably defined effective γWW and ZWW couplings.

We start from the Lagrangian (2.21) and denote the
parts of the amplitudes for e+e− → WW obtained from
the tree-level diagrams for t-channel neutrino exchange,
and s-channel photon and Z exchange by Aν , Aγ and
AZ , respectively. First we assume that these amplitudes
are the full expressions without linearisation in the hi.
Thus these amplitudes do not correspond to the sum of the
diagrams in Figs. 2 to 4, where we have assumed that all
terms of second or higher order in the anomalous couplings
are neglected and the diagrams with the various anoma-
lous contributions can therefore be summed linearly. The
linearisation is done in a second step below. The ampli-
tude Aν is identical to the neutrino t-channel exchange
in the SM. The amplitude Aγ is affected by the anoma-
lous couplings only at the γWW vertex. However, we will
define effective γWW couplings below because some con-
tributions from the Z exchange will be carried over to the
photon exchange. The amplitude AZ is affected by anoma-
lous couplings at the eeZ and ZWW vertices, as well as
through mZ . Now consider the currents (4.8) and (4.13)
for a certain charged lepton species � (in our case � is the
electron):

J µ
em(�) = �γµ(T3 + Y)�, (6.35)

J µ
NC(�) = �γµT3�− s2effJ µ

em(�). (6.36)

Further, we denote the vertex functions for the γWW
and ZWW vertices obtained from the Lagrangian terms
LγWW and LZWW , see (6.4) and (6.5), by ΓγWW and
ΓZWW , respectively. They include SM as well as anoma-
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Fig. 4. Z-boson-exchange diagrams. SM diagram a and anomalous contributions from the modification of the Z mass b, from
anomalous eeZ couplings c and anomalous ZWW couplings d
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lous contributions, and no linear approximation in the hi

is performed yet. We have then for the sum of the ampli-
tudes for photon and Z exchange in the PW scheme:

Aγ + AZ (6.37)

∝ J µ
em(�)

1
s
ΓγWW +GNCJ µ

NC(�)
1

s−m2
Z

ΓZWW

= J µ
em(�)

1
s
ΓγWW |eff

+GSM
NC
(
�γµT3�− s21J µ

em(�)
) 1

s− (mSM
Z

)2 ΓZWW |eff ,

where we have defined

GSM
NC =

1
s1c1

, mSM
Z =

mW

c1
, (6.38)

and the effective vertex functions

ΓγWW |eff = ΓγWW (6.39)

+
s

s−m2
Z

GNC
(
s21 − s2eff

)
ΓZWW ,

ΓZWW |eff =
GNC

GSM
NC

s− (mSM
Z

)2
s−m2

Z

ΓZWW . (6.40)

The squared CM energy of the electron–positron system
is denoted by s. From (6.37) we see that the sum of Aγ

and AZ can be calculated from the diagrams in Fig. 3 and
diagrams (a) and (d) in Fig. 4 if we use the vertex functions
ΓγWW |eff and ΓZWW |eff instead of ΓγWW and ΓZWW .
Expanding the coefficients of ΓZWW in (6.39) and (6.40)
to linear order in the hi we have, using (4.34),

ΓγWW |eff = ΓγWW − s

s−m2
W /c21

hWBΓZWW , (6.41)

ΓZWW |eff (6.42)

=
{

1 +
s1
c1

(1 + 4P (s))hWB + P (s)h(3)
ϕ

}
ΓZWW

with

P (s) =
m2

W /2
c21s−m2

W

. (6.43)

We can now think of ΓγWW |eff and ΓZWW |eff as vertex
functions emerging from the Lagrangian terms (6.4), (6.5)
and containing couplings ∆gγ

1 |eff , ∆gZ
1

∣∣
eff , etc. instead of

∆gγ
1 , ∆gZ

1 , etc. Taking into account the additional factor
of (c1/s1) in the SM couplings of ΓZWW compared to the
SM couplings of ΓγWW , see (6.1) to (6.3), we obtain to
linear order in the hi from (6.20) and (6.21)

∆gγ
1 |eff = − c31

s1

2s
m2

W

P (s)hWB , (6.44)

∆κγ |eff = −2c1
s1
P (s)hWB , (6.45)

∆gZ
1

∣∣
eff =

s1
c1

(1 + 4P (s))hWB + P (s)h(3)
ϕ , (6.46)

∆κZ |eff = P (s)
(

4s1
c1
hWB + h(3)

ϕ

)
. (6.47)

With all other couplings λγ |eff , λZ |eff , etc. of the ver-
tex functions ΓγWW |eff and ΓZWW |eff we drop the sub-
script “eff” and write λγ , λZ , etc. as usual since they are
related to the hi as before according to (6.22) to (6.25).
In the high-energy limit s � m2

W we obtain from (6.44)
to (6.47)

∆gγ
1 |eff ≈ − c1

s1
hWB , (6.48)

∆κγ |eff ≈ 0, (6.49)

∆gZ
1

∣∣
eff ≈ s1

c1
hWB , (6.50)

∆κZ |eff ≈ 0. (6.51)

The effective couplings do therefore not depend on h(3)
ϕ in

this limit. We recall that three of the gauge relations in
the PW scheme are

∆gγ
1 = 0, (6.52)

∆gZ
1 = 0, (6.53)

∆κZ = ∆gZ
1 − s21

c21
∆κγ , (6.54)

see (6.14) and (6.15) with s0 → s1 and c0 → c1, and (6.26).
Here, instead of these three relations we obtain two rela-
tions among the effective couplings

∆gγ
1 |eff = c21

s

m2
W

∆κγ |eff , (6.55)

∆κZ |eff = ∆gZ
1

∣∣
eff − s21

c21
∆κγ |eff (−2P (s))−1

. (6.56)

Notice the extra factor in the brackets in (6.56) compared
to the conventional relation (6.54). Instead of (6.56) one
can also choose a relation, whose coefficients are energy
independent:

∆κZ |eff = ∆gZ
1

∣∣
eff − s21

c21

(
∆κγ |eff − ∆gγ

1 |eff
)
. (6.57)

However, not both gauge relations between the effective
couplings ∆gγ

1 |eff , ∆κγ |eff , ∆gZ
1

∣∣
eff and ∆κZ |eff can be

chosen with energy independent coefficients. This can be
seen in the following way. Assume that in addition to
(6.57) there is a gauge relation

A ∆gγ
1 |eff +B ∆gZ

1

∣∣
eff + C ∆κγ |eff +D ∆κZ |eff = 0,

(6.58)
where A, B, C and D are constants. In the limit s � m2

W ,
cf. (6.48) to (6.51), we obtain from (6.58)

Bs21 = Ac21. (6.59)

Now, assuming (6.58) to be independent from (6.57), we
can without loss of generality set A = 0. Due to (6.59) we
then have also B = 0. The relation (6.58) is then a rela-
tion solely between ∆κγ |eff and ∆κZ |eff , which is not pos-
sible because these couplings are obviously independent,
see (6.45) and (6.47). Thus no such relation (6.58) with
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energy independent coefficients exists. Instead at least one
gauge relation, e.g. (6.55), depends on s. To summarise we
obtain the following gauge relations among the effective
couplings (as mentioned above for all but four couplings
we drop the subscript “eff”):

∆gγ
1 |eff = c21

s

m2
W

∆κγ |eff , (6.60)

∆κZ |eff = ∆gZ
1

∣∣
eff − s21

c21
∆κγ |eff (−2P (s))−1

, (6.61)

λZ = λγ , (6.62)

κ̃γ = − c21
s21
κ̃Z , (6.63)

λ̃γ = λ̃Z , (6.64)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.65)

Instead of (6.61) one may take the relation (6.57) with
energy independent coefficients.

Numerically we find from (6.22) to (6.25) that the cou-
plings λZ ,. . . , gZ

5 are expressed as linear combinations of
the parameters hi in the following way:

λZ = 0.980hW , λγ = 0.980hW , (6.66)
κ̃Z = −0.544hW̃B , κ̃γ = 1.84hW̃B , (6.67)

λ̃Z = 0.980hW̃ , λ̃γ = 0.980hW̃ , (6.68)

gγ
4 = gZ

4 = gγ
5 = gZ

5 = 0. (6.69)

For
√
s = 500 GeV we further obtain with (6.44) to (6.47)

∆gγ
1 |eff = −1.90hWB , (6.70)

∆κγ |eff = −0.064hWB , (6.71)

∆gZ
1

∣∣
eff = 0.582hWB + 0.017h(3)

ϕ , (6.72)

∆κZ |eff = 0.038hWB + 0.017h(3)
ϕ . (6.73)

For
√
s = 800 GeV, we have instead of (6.70) to (6.73)

∆gγ
1 |eff = −1.86hWB , (6.74)

∆κγ |eff = −0.024hWB , (6.75)

∆gZ
1

∣∣
eff = 0.558hWB + 0.007h(3)

ϕ , (6.76)

∆κZ |eff = 0.014hWB + 0.007h(3)
ϕ . (6.77)

In the high-energy limit s � m2
W we obtain from (6.48)

to (6.51)

∆gγ
1 |eff ≈ −1.84hWB , (6.78)

∆κγ |eff ≈ 0, (6.79)

∆gZ
1

∣∣
eff ≈ 0.544hWB , (6.80)

∆κZ |eff ≈ 0. (6.81)

From the measurements of ∆gγ
1 |eff , ∆κγ |eff ,. . . , gZ

5 in the
reaction e+e− → WW at a future LC [10,11] we can thus
get bounds on hW , hWB , h(3)

ϕ , hW̃ and hW̃B if s is not too
large. In the high-energy limit s � m2

W the CP conserving
coupling h(3)

ϕ cannot be measured in this way.

Table 12. Errors in units of 10−3 and correlations of the
CP conserving couplings at CM energy

√
s = 500 GeV

h δh × 103 hW hWB h
(3)
ϕ

hW 0.28 1 0.09 −0.26
hWB 0.32 1 −0.73
h

(3)
ϕ 36.4 1

Table 13. Same as Table 12 but for
√

s = 800 GeV

h δh × 103 hW hWB h
(3)
ϕ

hW 0.12 1 0.08 −0.15
hWB 0.16 1 −0.79
h

(3)
ϕ 53.7 1

Table 14. Errors in units of 10−3 and correlations of the
CP conserving couplings in the high-energy limit at CM energy√

s = 3 TeV

h δh × 103 hW hWB

hW 0.018 1 −0.004
hWB 0.015 1

Table 15. Errors in units of 10−3 and correlations of the
CP violating couplings at different CM energies

√
s δhW̃ × 103 δhW̃B × 103 corr.

500 GeV 0.28 2.2 17%
800 GeV 0.12 1.4 9%

3 TeV 0.018 0.77 2%

6.3 Bounds from e+e− → WW at a linear collider

In this section we discuss the reaction e+e− → WW , to be
measured at a future linear collider, in view of its sensitiv-
ity to the anomalous couplings hi. We assume unpolarised
e+ and e− beams and standard expected values for the in-
tegrated luminosities [27,30] 500 fb−1 at

√
s = 500 GeV,

1 ab−1 at
√
s = 800 GeV and 3 ab−1 at

√
s = 3 TeV. We

use the errors for all TGCs in the parameterisation (6.1),
as given for

√
s = 500 GeV and

√
s = 800 GeV in Tables 5

and 9 of [11], respectively, and take into account their
correlations (which are not listed there). We further use
the corresponding results calculated for

√
s = 3 TeV. From

these values we can extract the errors obtainable for the hi

using (6.66) to (6.77) by conventional error propagation.
We give the errors and correlations at CM energies of
500 GeV, 800 GeV and 3 TeV for the CP conserving cou-
plings in Tables 12 to 14 and for the CP violating ones
in Table 15. The errors of hW , hWB , hW̃ and hW̃B at
500 GeV are considerably smaller than the one on h

(3)
ϕ .

Notice that h(3)
ϕ becomes unmeasurable in the high-energy

limit; see (6.78) to (6.81). At
√
s = 3 TeV we thus ob-

tain no bound on h(3)
ϕ . For all other measurable couplings

the errors become much smaller with rising energy. No-
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tice that the error correlations decrease with rising energy
and the four measurable couplings are almost uncorrelated
at

√
s = 3 TeV.

7 Conclusions

We have analysed the phenomenology of the gauge-boson
sector of an electroweak locally SU(2) × U(1) invariant
effective Lagrangian. In addition to the SM Lagrangian
we took into account anomalous coupling terms from the
ten operators of dimension six built either only from the
SM gauge fields or from the SM gauge fields combined
with the SM-Higgs-doublet field. We found that after SSB
some anomalous terms contribute to the diagonal and off-
diagonal kinetic terms of the neutral gauge bosons, to the
mass terms of the W and the Z bosons, and to the ki-
netic term of the Higgs boson. This made necessary to
first identify the physical neutral gauge-boson fields as
linear combinations of the fields that originally occur in
the Lagrangian, and to renormalise the Higgs-boson field
and the charged gauge-boson fields. In this way, in addi-
tion to the gauge-boson self-interactions, also the neutral-
and charged-current interactions were modified. A careful
discussion of electroweak parameterisation schemes was
given; see Table 3. We have studied the impact of anoma-
lous couplings onto LEP and SLC observables. For a large
class of observables the anomalous effects only show up
through a modified effective leptonic weak mixing angle;
see Sect. 5. The functional dependence of these observables
on the effective mixing angle is the same as in the SM.
Thus the discrepancy between the predictions for this an-
gle from hadronic and leptonic observables cannot be ob-
tained by non-zero anomalous couplings from our boson
operators. The observables ΓZ , mW and ΓW , depend on
the anomalous couplings in a different way and therefore
lead to further constraints. From all these observables we
obtain bounds of order 10−3 for the dimensionless cou-
plings hWB and h(3)

ϕ . These bounds depend on mH .
Turning then to the TGCs we found that in addition

to the two couplings hWB and h
(3)
ϕ one more CP con-

serving coupling, hW , and the two CP violating cou-
plings hW̃ and hW̃B modify the γWW and ZWW ver-
tices in the scheme PZ . In the scheme PW the triple-
gauge-boson vertices are parameterised by one coupling
less than in PZ ; see Tables 3 and 7. In other words there
is an additional gauge relation in the scheme PW . How-
ever, both with PZ and with PW some CP conserving
couplings also change the boson–fermion interactions. For
the specific reaction e+e− → WW and using PW we have
defined effective TGCs such that all anomalous effects
are absorbed into the effective three-gauge-boson vertices
ΓγWW |eff and ΓZWW |eff . The anomalous gauge-boson–
fermion interactions are thus fully taken into account here
(in the approximation linear in the hi) though in the ex-
plicit calculation of the differential cross section every-
thing apart from the TGCs is assumed to be SM like. With
the effective couplings one more parameter re-enters the
differential cross section in the scheme PW . The gauge re-
lations between the effective couplings are different from

those between standard TGCs. At least one gauge relation
contains the squared CM energy s of the electron–positron
system.

For the bounds derived from LEP2 data that includes
various processes and not only W -boson-pair production
we have used PZ and only considered the conventional
TGCs. This gives exact results for the CP violating cou-
plings, but only approximate results for the CP conserv-
ing ones, since we have neglected the modified W mass
and boson–fermion interactions there. For the couplings
hWB and h(3)

ϕ the direct LEP2 measurements do not give
tighter bounds than the other LEP and SLC observables.
However, we obtain in addition bounds on hW , hW̃ and
hW̃B of order 0.1.

Our summary of the presently available information
on the anomalous couplings hi is presented in Tables 8
and 9 and in Fig. 1. We find that the data is consistent
with a light Higgs boson, mH = 120 GeV and practically
vanishing anomalous couplings. But also a heavy Higgs
boson, mH ≈ 500 GeV, is in accordance with the present
data if only small anomalous couplings hWB and h

(3)
ϕ of

order 10−3 are introduced in the gauge-boson sector; see
Fig. 1. Moreover the data prefer a value for hW of −0.06
over hW = 0 at the 2σ level; see Table 8. This may change
if radiative corrections are included in the relevant LEP2
analyses of TGCs.

We have investigated in detail the effects of our ef-
fective Lagrangian on the reaction e+e− → WW at a fu-
ture LC. To this end we have used the results obtained
for solely TGCs in the most general parameterisation for
unpolarised beams and longitudinal polarisation [10] as
well as for transverse polarisation [11]. These analyses
have been done with optimal observables and the derived
constraints on the hi therefore give the optimal bounds
that one can obtain in this reaction from the normalised
event distribution. Here we have used the scheme PW

and our technique with the effective vertices ΓγWW |eff
and ΓZWW |eff . For most couplings the bounds obtainable
with standard expected integrated luminosities are δhi

around a few 10−4 to 10−3 at a CM energy
√
s = 500 GeV

and are greatly improved with rising energy. Only one
coupling, h(3)

ϕ , is not measurable in the high-energy limit.
Now we compare our results to the ones of [18,19]. The

authors of [18] have calculated at tree and one-loop level
the γγ-, γZ-, ZZ- and WW -two-point functions as well
as the vector-boson–fermion vertex functions in an effec-
tive Lagrangian approach with two additional operators
of dimension six. Thus they are more general in consider-
ing also loop effects but in the present work we are more
general in including more operators.

In the extensive work [19] a gauge invariant effective
Lagrangian with dimension-six operators is considered.
There only C and P conserving operators are included.
The total set of operators that can be constructed using
the gauge fields and the Higgs field of the SM is reduced
by discarding terms which are only total derivatives. How-
ever, in contrast to [16] and to our analysis here, the equa-
tions of motion are not applied in the reduction of the
number of operators since the authors of [19] considered
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tree-level and one-loop effects. Compared to this work we
have studied here the tree-level effects of C, P and CP
conserving and violating operators. We have also shown
the advantages and disadvantages of the two parameter-
isation schemes, PZ and PW , for the study of TGCs. Fi-
nally we have defined effective TGCs in the scheme PW

which allow a direct comparison of the ELb, ELa and FF
approaches for e+e− → WW .

An extensive study [23] has discussed the measurement
of the γWW and ZWW couplings at the LHC. Using
events with a W±Z (W±γ) pair in the final state one is
sensitive only to the ZWW (γWW ) couplings in Drell–
Yan-type production, and therefore the two groups of cou-
plings can be measured separately. Since our results are in
the ELb framework they cannot be directly compared to
those of [23] where merely anomalous TGCs are assumed.
In [23] bounds on three TGCs from events with a W±Z
or a W±γ pair are also computed in a framework with a
gauge invariant effective Lagrangian. However there, too,
effects from other vertices or propagators are not consid-
ered and therefore also these results cannot be directly
compared with ours. For all these reasons we conclude
that a concise comparison of the sensitivity at the LHC
with the bounds from a future LC calculated in this pa-
per requires a full calculation of the processes there, which
is beyond the scope of the present work. We should also
note that the TGCs studied for the LHC in [23] the ZWW
and γWW vertices are studied for one W far off-shell, the
other W and the Z and γ on-shell. In our LC study the
two W s are on-shell, the Z and γ far off-shell. We see
that there is nice complementarity of the LHC and LC
possibilities.

Coming back to the results of our present paper we
note that the Giga-Z mode at TESLA, see Sect. 5.1.4 of
[28], will be particularly interesting to accurately mea-
sure hWB and h

(3)
ϕ . A measurement at the Z pole with an

event rate that is about 100 times that of LEP1, should
in essence reduce the errors δh given in Table 5 by a fac-
tor 10. Thus hWB and h(3)

ϕ can then be measured with an
accuracy of some 10−4. However, systematical errors can
become more important there [48].

A very interesting opportunity for the exploration of
the electroweak gauge-boson sector is the measurement of
the differential cross section of γγ → WW at a photon
collider, which we shall explore in a future work [34]. Here
two new coupling combinations can be determined that
cannot be measured with the other options that we have
considered.

We have seen that experiments performed in the past
as well as the Giga-Z, the e+e− and the γγ options at a
future LC all provide and will provide useful and com-
plementary information on the gauge-boson sector. At
present a non-zero value is preferred for hW at the 2σ level,
while small hWB and h

(3)
ϕ can make a heavy standard

model Higgs boson with mH ≈ 500 GeV compatible with
the data. The bounds on the CP conserving anomalous
couplings depend on the mass of the Higgs boson. Until
the Higgs boson is found the bounds on these couplings
can therefore only be given as a function of mH . If a Higgs

boson is discovered at the LHC the constraints on the
CP conserving couplings from LEP and SLC observables
can be precisely stated. The present bounds on the CP vi-
olating couplings are rather loose. In the future, with data
from all three mentioned linear collider modes seven out
of ten anomalous coupling combinations can be measured.
Our study in this paper and the one to follow on the re-
action γγ → WW should make it clear that exploring the
electroweak gauge structure needs a comprehensive study
at a future linear collider where all running modes are
needed and will reveal interesting complementary aspects.
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